論文の概要: Adaptive Weighted Parameter Fusion with CLIP for Class-Incremental Learning
- arxiv url: http://arxiv.org/abs/2503.19503v1
- Date: Tue, 25 Mar 2025 09:51:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:55:19.912537
- Title: Adaptive Weighted Parameter Fusion with CLIP for Class-Incremental Learning
- Title(参考訳): クラスインクリメンタル学習のためのCLIPを用いた適応重み付きパラメータ融合
- Authors: Juncen Guo, Xiaoguang Zhu, Liangyu Teng, Hao Yang, Jing Liu, Yang Liu, Liang Song,
- Abstract要約: クラス増分学習により、モデルは新しいクラスからの知識を漸進的に吸収することができる。
モデルが新しいクラスで最適化されると、前のクラスの知識は必然的に消去され、破滅的な忘れ去られる。
- 参考スコア(独自算出の注目度): 12.67816343247008
- License:
- Abstract: Class-incremental Learning (CIL) enables the model to incrementally absorb knowledge from new classes and build a generic classifier across all previously encountered classes. When the model optimizes with new classes, the knowledge of previous classes is inevitably erased, leading to catastrophic forgetting. Addressing this challenge requires making a trade-off between retaining old knowledge and accommodating new information. However, this balancing process often requires sacrificing some information, which can lead to a partial loss in the model's ability to discriminate between classes. To tackle this issue, we design the adaptive weighted parameter fusion with Contrastive Language-Image Pre-training (CLIP), which not only takes into account the variability of the data distribution of different tasks, but also retains all the effective information of the parameter matrix to the greatest extent. In addition, we introduce a balance factor that can balance the data distribution alignment and distinguishability of adjacent tasks. Experimental results on several traditional benchmarks validate the superiority of the proposed method.
- Abstract(参考訳): クラスインクリメンタルラーニング(Class-incremental Learning, CIL)は、モデルが新しいクラスからの知識を漸進的に吸収し、以前に遭遇したすべてのクラスにまたがるジェネリックな分類器を構築することを可能にする。
モデルが新しいクラスで最適化されると、前のクラスの知識は必然的に消去され、破滅的な忘れ去られる。
この課題に対処するには、古い知識の保持と、新しい情報の提供の間のトレードオフが必要になる。
しかし、このバランスをとるには、しばしばいくつかの情報を犠牲にしなければなりません。
この問題に対処するために,コントラスト言語-画像事前学習(CLIP)を用いた適応重み付けパラメータ融合を設計する。
さらに,データ分散アライメントと隣接タスクの識別可能性のバランスをとるバランスファクタを導入する。
いくつかの従来のベンチマークによる実験結果から,提案手法の優位性を検証した。
関連論文リスト
- CSTA: Spatial-Temporal Causal Adaptive Learning for Exemplar-Free Video Class-Incremental Learning [62.69917996026769]
クラスインクリメンタルな学習課題は、空間的外観と時間的行動の関与の両方を学習し、保存することを必要とする。
本稿では,各クラス固有のインクリメンタル情報要件を調整し,新しいクラスパターンを学習するためのアダプタを分離するフレームワークを提案する。
異なる種類の情報間のインクリメントと記憶の衝突を減らすために,因果補償機構を提案する。
論文 参考訳(メタデータ) (2025-01-13T11:34:55Z) - Covariance-based Space Regularization for Few-shot Class Incremental Learning [25.435192867105552]
FSCIL(Few-shot Class Incremental Learning)では,ラベル付きデータに制限のあるクラスを継続的に学習する必要がある。
インクリメンタルセッションにおける限られたデータのため、モデルは新しいクラスを過度に適合させ、ベースクラスの破滅的な忘れを苦しむ傾向にある。
最近の進歩は、基本クラス分布を制約し、新しいクラスの識別的表現を学習するプロトタイプベースのアプローチに頼っている。
論文 参考訳(メタデータ) (2024-11-02T08:03:04Z) - Class-Incremental Learning with CLIP: Adaptive Representation Adjustment and Parameter Fusion [10.322832012497722]
クラス増分学習(class-incremental learning)は難しい問題であり、目標は、時間とともに増加するクラスからデータを分類できるモデルをトレーニングすることである。
CLIPのような視覚言語で事前訓練されたモデルの進歩により、彼らは優れた一般化能力を示した。
しかし、単にモデルを微調整することで、下流タスクへのさらなる適応は、ひどく忘れてしまう。
事前訓練されたモデルを用いた既存の研究の多くは、モデルが新しい知識を得るとき、古いクラスを忘れることは一様であると仮定している。
論文 参考訳(メタデータ) (2024-07-19T09:20:33Z) - Neural Collapse Terminus: A Unified Solution for Class Incremental
Learning and Its Variants [166.916517335816]
本稿では,3つの課題における不整合ジレンマに対する統一解を提案する。
ラベル空間全体の最大等角的クラス間分離を有する固定構造である神経崩壊終端を提案する。
本手法は,データ不均衡やデータ不足にかかわらず,神経崩壊最適度を漸進的に保持する。
論文 参考訳(メタデータ) (2023-08-03T13:09:59Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
継続学習(CL)は、古いタスクを忘れずに、非定常データストリームで異なるタスク(分類など)を学習することを目的としている。
本稿では,事前学習モデルを用いたCLの簡潔かつ効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-05T12:49:02Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
対照的に、CLIP(Language-image Pre-training)モデルでは、印象的なゼロショット能力を示しているが、下流タスクにおけるCLIPのさらなる適応は、OODのパフォーマンスを好ましくない劣化させる。
ドメインシフトとオープンクラスの両方が見えないテストデータ上で発生する可能性があるOOD状況にCLIPモデルを適用するための微調整手法であるCLIPoodを提案する。
さまざまなOODシナリオによるさまざまなデータセットの実験は、CLIPoodが既存の一般化テクニックを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2023-02-02T04:27:54Z) - Leveraging Angular Information Between Feature and Classifier for
Long-tailed Learning: A Prediction Reformulation Approach [90.77858044524544]
分類器の重みを再バランスすることなく、包含角度で認識確率を再構成する。
予測形式再構成の性能向上に着想を得て, この角度予測の異なる特性について検討する。
CIFAR10/100-LT と ImageNet-LT を事前学習することなく、ピアメソッド間で最高の性能を得ることができる。
論文 参考訳(メタデータ) (2022-12-03T07:52:48Z) - Multi-Granularity Regularized Re-Balancing for Class Incremental
Learning [32.52884416761171]
ディープラーニングモデルは、新しいタスクを学ぶときに破滅的な忘れに苦しむ。
古いクラスと新しいクラスのデータの不均衡は、モデルのパフォーマンスが低下する鍵となる問題である。
この問題を解決するために,仮定に依存しないマルチグラニュラリティ正規化再バランシング法を提案する。
論文 参考訳(メタデータ) (2022-06-30T11:04:51Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot Class-Incremental Learning(FSCIL)は、いくつかのデータポイントから新しい概念を継続的に学習できる機械学習アルゴリズムの設計を目指している。
難点は、新しいクラスからの限られたデータが、重大な過度な問題を引き起こすだけでなく、破滅的な忘れの問題も悪化させることにある。
我々は,適応のための分類器間のコンテキスト情報を伝達するグラフモデルを用いた連続進化型cif(cec)を提案する。
論文 参考訳(メタデータ) (2021-04-07T10:54:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。