Single-Step Latent Consistency Model for Remote Sensing Image Super-Resolution
- URL: http://arxiv.org/abs/2503.19505v1
- Date: Tue, 25 Mar 2025 09:56:21 GMT
- Title: Single-Step Latent Consistency Model for Remote Sensing Image Super-Resolution
- Authors: Xiaohui Sun, Jiangwei Mo, Hanlin Wu, Jie Ma,
- Abstract summary: We propose a novel single-step diffusion approach designed to enhance both efficiency and visual quality in RSISR tasks.<n>The proposed LCMSR reduces the iterative steps of traditional diffusion models from 50-1000 or more to just a single step.<n> Experimental results demonstrate that LCMSR effectively balances efficiency and performance, achieving inference times comparable to non-diffusion models.
- Score: 7.920423405957888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in diffusion models (DMs) have greatly advanced remote sensing image super-resolution (RSISR). However, their iterative sampling processes often result in slow inference speeds, limiting their application in real-time tasks. To address this challenge, we propose the latent consistency model for super-resolution (LCMSR), a novel single-step diffusion approach designed to enhance both efficiency and visual quality in RSISR tasks. Our proposal is structured into two distinct stages. In the first stage, we pretrain a residual autoencoder to encode the differential information between high-resolution (HR) and low-resolution (LR) images, transitioning the diffusion process into a latent space to reduce computational costs. The second stage focuses on consistency diffusion learning, which aims to learn the distribution of residual encodings in the latent space, conditioned on LR images. The consistency constraint enforces that predictions at any two timesteps along the reverse diffusion trajectory remain consistent, enabling direct mapping from noise to data. As a result, the proposed LCMSR reduces the iterative steps of traditional diffusion models from 50-1000 or more to just a single step, significantly improving efficiency. Experimental results demonstrate that LCMSR effectively balances efficiency and performance, achieving inference times comparable to non-diffusion models while maintaining high-quality output.
Related papers
- One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation [60.54811860967658]
FluxSR is a novel one-step diffusion Real-ISR based on flow matching models.
First, we introduce Flow Trajectory Distillation (FTD) to distill a multi-step flow matching model into a one-step Real-ISR.
Second, to improve image realism and address high-frequency artifact issues in generated images, we propose TV-LPIPS as a perceptual loss.
arXiv Detail & Related papers (2025-02-04T04:11:29Z) - Latent Diffusion, Implicit Amplification: Efficient Continuous-Scale Super-Resolution for Remote Sensing Images [7.920423405957888]
E$2$DiffSR achieves superior objective metrics and visual quality compared to the state-of-the-art SR methods.
It reduces the inference time of diffusion-based SR methods to a level comparable to that of non-diffusion methods.
arXiv Detail & Related papers (2024-10-30T09:14:13Z) - A Wavelet Diffusion GAN for Image Super-Resolution [7.986370916847687]
Diffusion models have emerged as a superior alternative to generative adversarial networks (GANs) for high-fidelity image generation.
However, their real-time feasibility is hindered by slow training and inference speeds.
This study proposes a wavelet-based conditional Diffusion GAN scheme for Single-Image Super-Resolution.
arXiv Detail & Related papers (2024-10-23T15:34:06Z) - AP-LDM: Attentive and Progressive Latent Diffusion Model for Training-Free High-Resolution Image Generation [12.564266865237343]
Latent diffusion models (LDMs) often experience significant structural distortions when directly generating high-resolution (HR) images.
We propose an Attentive and Progressive LDM (AP-LDM) aimed at enhancing HR image quality while accelerating the generation process.
AP-LDM decomposes the denoising process of LDMs into two stages: (i) attentive training-resolution denoising, and (ii) progressive high-resolution denoising.
arXiv Detail & Related papers (2024-10-08T13:56:28Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - Taming Diffusion Prior for Image Super-Resolution with Domain Shift SDEs [36.65594293655289]
DoSSR is a Domain Shift diffusion-based SR model that capitalizes on the generative powers of pretrained diffusion models.
At the core of our approach is a domain shift equation that integrates seamlessly with existing diffusion models.
Our proposed method achieves state-of-the-art performance on synthetic and real-world datasets, while notably requiring only 5 sampling steps.
arXiv Detail & Related papers (2024-09-26T12:16:11Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
We distill a complex multistep diffusion model into a single-step conditional GAN student model.
For efficient regression loss, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space.
We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models.
arXiv Detail & Related papers (2024-05-09T17:59:40Z) - ResShift: Efficient Diffusion Model for Image Super-resolution by
Residual Shifting [70.83632337581034]
Diffusion-based image super-resolution (SR) methods are mainly limited by the low inference speed.
We propose a novel and efficient diffusion model for SR that significantly reduces the number of diffusion steps.
Our method constructs a Markov chain that transfers between the high-resolution image and the low-resolution image by shifting the residual.
arXiv Detail & Related papers (2023-07-23T15:10:02Z) - Simultaneous Image-to-Zero and Zero-to-Noise: Diffusion Models with Analytical Image Attenuation [53.04220377034574]
We propose incorporating an analytical image attenuation process into the forward diffusion process for high-quality (un)conditioned image generation.<n>Our method represents the forward image-to-noise mapping as simultaneous textitimage-to-zero mapping and textitzero-to-noise mapping.<n>We have conducted experiments on unconditioned image generation, textite.g., CIFAR-10 and CelebA-HQ-256, and image-conditioned downstream tasks such as super-resolution, saliency detection, edge detection, and image inpainting.
arXiv Detail & Related papers (2023-06-23T18:08:00Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.