論文の概要: Unlocking the Hidden Potential of CLIP in Generalizable Deepfake Detection
- arxiv url: http://arxiv.org/abs/2503.19683v1
- Date: Tue, 25 Mar 2025 14:10:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:55:11.897699
- Title: Unlocking the Hidden Potential of CLIP in Generalizable Deepfake Detection
- Title(参考訳): 一般化可能なディープフェイク検出におけるCLIPの隠れ電位のアンロック
- Authors: Andrii Yermakov, Jan Cech, Jiri Matas,
- Abstract要約: 本稿では,顔の深部を部分的に操作して検出する課題に対処する。
我々は、Contrastive Language-Image Pre-Training(CLIP)モデル、特にViT-L/14ビジュアルエンコーダを利用する。
提案手法は,LNチューニングなどのPEFT技術を用いて,モデルのパラメータの小さな部分集合を調整する。
- 参考スコア(独自算出の注目度): 23.48106270102081
- License:
- Abstract: This paper tackles the challenge of detecting partially manipulated facial deepfakes, which involve subtle alterations to specific facial features while retaining the overall context, posing a greater detection difficulty than fully synthetic faces. We leverage the Contrastive Language-Image Pre-training (CLIP) model, specifically its ViT-L/14 visual encoder, to develop a generalizable detection method that performs robustly across diverse datasets and unknown forgery techniques with minimal modifications to the original model. The proposed approach utilizes parameter-efficient fine-tuning (PEFT) techniques, such as LN-tuning, to adjust a small subset of the model's parameters, preserving CLIP's pre-trained knowledge and reducing overfitting. A tailored preprocessing pipeline optimizes the method for facial images, while regularization strategies, including L2 normalization and metric learning on a hyperspherical manifold, enhance generalization. Trained on the FaceForensics++ dataset and evaluated in a cross-dataset fashion on Celeb-DF-v2, DFDC, FFIW, and others, the proposed method achieves competitive detection accuracy comparable to or outperforming much more complex state-of-the-art techniques. This work highlights the efficacy of CLIP's visual encoder in facial deepfake detection and establishes a simple, powerful baseline for future research, advancing the field of generalizable deepfake detection. The code is available at: https://github.com/yermandy/deepfake-detection
- Abstract(参考訳): 本論文は, 顔の特徴を微妙に変化させながら, 全体の文脈を保ちながら, 顔の深度を微妙に変化させる部分操作による顔深度検出の課題に対処し, 完全合成顔よりも検出が困難であることを示す。
比較言語-画像事前学習(CLIP)モデル、特にそのViT-L/14ビジュアルエンコーダを利用して、多様なデータセットや未知の偽造技術に対して、元のモデルに最小限の変更を加えることなく、堅牢に機能する一般化可能な検出手法を開発する。
提案手法は,LNチューニングのようなパラメータ効率のよい微調整(PEFT)技術を用いて,モデルのパラメータの小さなサブセットを調整し,CLIPの事前学習知識を保存し,過度な適合を低減する。
調整前処理パイプラインは顔画像の最適化を最適化し、L2正規化や超球面多様体での計量学習を含む正規化戦略により一般化が促進される。
FaceForensics++データセットに基づいてトレーニングし,Celeb-DF-v2,DFDC,FFIWなどのクロスデータセットで評価し,より複雑な最先端技術に匹敵する競合検出精度を達成する。
この研究は、顔深度検出におけるCLIPのビジュアルエンコーダの有効性を強調し、将来の研究のためのシンプルで強力なベースラインを確立し、一般化可能な深度検出の分野を前進させる。
コードは、https://github.com/yermandy/deepfake-detection.comで入手できる。
関連論文リスト
- Wavelet-Driven Generalizable Framework for Deepfake Face Forgery Detection [0.0]
Wavelet-CLIPは、ウェーブレット変換とViT-L/14アーキテクチャに由来する機能を統合したディープフェイク検出フレームワークで、CLIP方式で事前トレーニングされている。
提案手法は,データ間一般化における平均AUC0.749,不明瞭なディープフェイクに対するロバスト性0.893を達成し,優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-26T21:16:51Z) - Standing on the Shoulders of Giants: Reprogramming Visual-Language Model for General Deepfake Detection [16.21235742118949]
本稿では,よく訓練された視覚言語モデル(VLM)を一般深度検出に活用する手法を提案する。
入力摂動によってモデル予測を操作するモデル再プログラミングパラダイムにより,本手法はトレーニング済みのVLMモデルを再プログラムすることができる。
いくつかの人気のあるベンチマークデータセットの実験では、ディープフェイク検出のクロスデータセットとクロスマニピュレーションのパフォーマンスが大幅に改善できることが示されている。
論文 参考訳(メタデータ) (2024-09-04T12:46:30Z) - Semantics-Oriented Multitask Learning for DeepFake Detection: A Joint Embedding Approach [77.65459419417533]
本稿ではセマンティクス指向のDeepFake検出タスクをサポートするための自動データセット拡張手法を提案する。
また,顔画像とそれに対応するラベルを併用して予測を行う。
提案手法は,DeepFake検出の一般化性を向上し,人間の理解可能な説明を提供することで,ある程度のモデル解釈を行う。
論文 参考訳(メタデータ) (2024-08-29T07:11:50Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - Towards More General Video-based Deepfake Detection through Facial Component Guided Adaptation for Foundation Model [16.69101880602321]
一般化ビデオに基づくDeepfake検出のためのサイドネットワークベースのデコーダを提案する。
また、空間学習の一般化性を高めるために、FCG(Facial Component Guidance)を導入する。
提案手法は,Deepfakeデータセットに挑戦する上で有望な一般化性を示す。
論文 参考訳(メタデータ) (2024-04-08T14:58:52Z) - CLIPping the Deception: Adapting Vision-Language Models for Universal
Deepfake Detection [3.849401956130233]
広汎な深度検出のための最近の適応手法と組み合わせた事前学習型視覚言語モデル(VLM)の有効性について検討する。
ディープフェイク検出にCLIPを適用するために、単一のデータセット(ProGAN)のみを使用します。
シンプルで軽量なPrompt Tuningベースの適応戦略は、以前のSOTAアプローチよりも5.01% mAPと6.61%の精度で優れている。
論文 参考訳(メタデータ) (2024-02-20T11:26:42Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Self-supervised Transformer for Deepfake Detection [112.81127845409002]
現実世界のシナリオにおけるディープフェイク技術は、顔偽造検知器のより強力な一般化能力を必要とする。
転送学習に触発されて、他の大規模な顔関連タスクで事前訓練されたニューラルネットワークは、ディープフェイク検出に有用な機能を提供する可能性がある。
本稿では,自己教師型変換器を用いた音声視覚コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-02T17:44:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。