How to RETIRE Tabular Data in Favor of Discrete Digital Signal Representation
- URL: http://arxiv.org/abs/2503.19733v1
- Date: Tue, 25 Mar 2025 15:00:54 GMT
- Title: How to RETIRE Tabular Data in Favor of Discrete Digital Signal Representation
- Authors: Paweł Zyblewski, Szymon Wojciechowski,
- Abstract summary: New research area dubbed Multi-Dimensional.<n>(MDE) aims to transform data into a homogeneous form of discrete digital signals (images) to apply convolutional networks to initially unsuitable problems.<n>We propose the Radar-based presentation from Tabular to Image REpresentation (RETIRE)<n>RETIRE was compared with a pool of state-of-the-art MDE algorithms as well as with XGBoost in terms of classification accuracy and computational complexity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The successes achieved by deep neural networks in computer vision tasks have led in recent years to the emergence of a new research area dubbed Multi-Dimensional Encoding (MDE). Methods belonging to this family aim to transform tabular data into a homogeneous form of discrete digital signals (images) to apply convolutional networks to initially unsuitable problems. Despite the successive emerging works, the pool of multi-dimensional encoding methods is still low, and the scope of research on existing modality encoding techniques is quite limited. To contribute to this area of research, we propose the Radar-based Encoding from Tabular to Image REpresentation (RETIRE), which allows tabular data to be represented as radar graphs, capturing the feature characteristics of each problem instance. RETIRE was compared with a pool of state-of-the-art MDE algorithms as well as with XGBoost in terms of classification accuracy and computational complexity. In addition, an analysis was carried out regarding transferability and explainability to provide more insight into both RETIRE and existing MDE techniques. The results obtained, supported by statistical analysis, confirm the superiority of RETIRE over other established MDE methods.
Related papers
- A Novel Approach to Image Steganography Using Generative Adversarial Networks [0.0]
We propose a novel approach to image steganography that leverages the power of generative adversarial networks (GANs)<n>By employing a carefully designed GAN architecture, our method ensures the creation of stego-images that are visually indistinguishable from their original counterparts.<n>Our results demonstrate significant improvements in metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and robustness against detection.
arXiv Detail & Related papers (2024-11-27T14:34:41Z) - Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - Employing Two-Dimensional Word Embedding for Difficult Tabular Data Stream Classification [0.0]
This paper proposes Streaming Super Tabular Machine Learning (SSTML) for the difficult data stream classification task.
Experiments conducted on synthetic and real data streams have demonstrated the ability of SSTML to achieve classification quality statistically significantly superior to state-of-the-art algorithms.
arXiv Detail & Related papers (2024-04-24T12:14:54Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Images in Discrete Choice Modeling: Addressing Data Isomorphism in
Multi-Modality Inputs [77.54052164713394]
This paper explores the intersection of Discrete Choice Modeling (DCM) and machine learning.
We investigate the consequences of embedding high-dimensional image data that shares isomorphic information with traditional tabular inputs within a DCM framework.
arXiv Detail & Related papers (2023-12-22T14:33:54Z) - Enhancing Motor Imagery Decoding in Brain Computer Interfaces using
Riemann Tangent Space Mapping and Cross Frequency Coupling [5.860347939369221]
Motor Imagery (MI) serves as a crucial experimental paradigm within the realm of Brain Computer Interfaces (BCIs)
This paper introduces a novel approach to enhance the representation quality and decoding capability pertaining to MI features.
A lightweight convolutional neural network is employed for further feature extraction and classification, operating under the joint supervision of cross-entropy and center loss.
arXiv Detail & Related papers (2023-10-29T23:37:47Z) - Mixed Graph Contrastive Network for Semi-Supervised Node Classification [63.924129159538076]
We propose a novel graph contrastive learning method, termed Mixed Graph Contrastive Network (MGCN)<n>In our method, we improve the discriminative capability of the latent embeddings by an unperturbed augmentation strategy and a correlation reduction mechanism.<n>By combining the two settings, we extract rich supervision information from both the abundant nodes and the rare yet valuable labeled nodes for discriminative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Quantifying Model Uncertainty in Inverse Problems via Bayesian Deep
Gradient Descent [4.029853654012035]
Recent advances in inverse problems leverage powerful data-driven models, e.g., deep neural networks.
We develop a scalable, data-driven, knowledge-aided computational framework to quantify the model uncertainty via Bayesian neural networks.
arXiv Detail & Related papers (2020-07-20T09:43:31Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.