Surg-3M: A Dataset and Foundation Model for Perception in Surgical Settings
- URL: http://arxiv.org/abs/2503.19740v1
- Date: Tue, 25 Mar 2025 15:05:00 GMT
- Title: Surg-3M: A Dataset and Foundation Model for Perception in Surgical Settings
- Authors: Chengan Che, Chao Wang, Tom Vercauteren, Sophia Tsoka, Luis C. Garcia-Peraza-Herrera,
- Abstract summary: We present SurgFM, a self-supervised foundation model pretrained on Surg-3M that achieves impressive results in downstream tasks.<n>Both Surg-3M and SurgFM have significant potential to accelerate progress towards developing autonomous robotic surgery systems.
- Score: 4.912213082028129
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancements in computer-assisted surgical procedures heavily rely on accurate visual data interpretation from camera systems used during surgeries. Traditional open-access datasets focusing on surgical procedures are often limited by their small size, typically consisting of fewer than 100 videos with less than 100K images. To address these constraints, a new dataset called Surg-3M has been compiled using a novel aggregation pipeline that collects high-resolution videos from online sources. Featuring an extensive collection of over 4K surgical videos and more than 3 million high-quality images from multiple procedure types, Surg-3M offers a comprehensive resource surpassing existing alternatives in size and scope, including two novel tasks. To demonstrate the effectiveness of this dataset, we present SurgFM, a self-supervised foundation model pretrained on Surg-3M that achieves impressive results in downstream tasks such as surgical phase recognition, action recognition, and tool presence detection. Combining key components from ConvNeXt, DINO, and an innovative augmented distillation method, SurgFM exhibits exceptional performance compared to specialist architectures across various benchmarks. Our experimental results show that SurgFM outperforms state-of-the-art models in multiple downstream tasks, including significant gains in surgical phase recognition (+8.9pp, +4.7pp, and +3.9pp of Jaccard in AutoLaparo, M2CAI16, and Cholec80), action recognition (+3.1pp of mAP in CholecT50) and tool presence detection (+4.6pp of mAP in Cholec80). Moreover, even when using only half of the data, SurgFM outperforms state-of-the-art models in AutoLaparo and achieves state-of-the-art performance in Cholec80. Both Surg-3M and SurgFM have significant potential to accelerate progress towards developing autonomous robotic surgery systems.
Related papers
- SurgVLM: A Large Vision-Language Model and Systematic Evaluation Benchmark for Surgical Intelligence [72.10889173696928]
We propose SurgVLM, one of the first large vision-language foundation models for surgical intelligence.<n>We construct a large-scale multimodal surgical database, SurgVLM-DB, spanning more than 16 surgical types and 18 anatomical structures.<n>Building upon this comprehensive dataset, we propose SurgVLM, which is built upon Qwen2.5-VL, and undergoes instruction tuning to 10+ surgical tasks.
arXiv Detail & Related papers (2025-06-03T07:44:41Z) - Surgical Foundation Model Leveraging Compression and Entropy Maximization for Image-Guided Surgical Assistance [50.486523249499115]
Real-time video understanding is critical to guide procedures in minimally invasive surgery (MIS)<n>We propose Compress-to-Explore (C2E), a novel self-supervised framework to learn compact, informative representations from surgical videos.<n>C2E uses entropy-maximizing decoders to compress images while preserving clinically relevant details, improving encoder performance without labeled data.
arXiv Detail & Related papers (2025-05-16T14:02:24Z) - EndoLRMGS: Complete Endoscopic Scene Reconstruction combining Large Reconstruction Modelling and Gaussian Splatting [16.50682401904587]
We propose EndoLRMGS, that combines Large Reconstruction Modelling (LRM) and Gaussian Splatting (GS) for complete surgical scene reconstruction.
GS reconstructs deformable tissues and LRM generates 3D models for surgical tools while position and scale are subsequently optimized.
In experiments on four surgical videos from three public datasets, our method improves the Intersection-over-union (IoU) of tool 3D models in 2D projections by>40%.
arXiv Detail & Related papers (2025-03-28T13:57:12Z) - Recognize Any Surgical Object: Unleashing the Power of Weakly-Supervised Data [15.00025814170182]
RASO is a foundation model designed to Recognize Any Surgical Object.<n>It generates tag-image-text pairs automatically from large-scale unannotated surgical lecture videos.<n>It surpasses state-of-the-art models in supervised surgical action recognition tasks.
arXiv Detail & Related papers (2025-01-25T21:01:52Z) - Scaling up self-supervised learning for improved surgical foundation models [7.188884777849523]
This study introduces SurgeNetXL, a novel surgical foundation model that sets a new benchmark in surgical computer vision.<n>SurgeNetXL achieves consistent top-tier performance across six datasets spanning four surgical procedures and three tasks.<n>These findings pave the way for improved generalizability and robustness in data-scarce scenarios.
arXiv Detail & Related papers (2025-01-16T10:07:44Z) - Identifying Surgical Instruments in Pedagogical Cataract Surgery Videos through an Optimized Aggregation Network [1.053373860696675]
This paper presents a deep learning model for real-time identification of surgical instruments in cataract surgery videos.<n>Inspired by the architecture of YOLOV9, the model employs a Programmable Gradient Information (PGI) mechanism and a novel Generally-d Efficient Layer Aggregation Network (Go-ELAN)<n>The Go-ELAN YOLOV9 model, evaluated against YOLO v5, v7, v8, v9 vanilla, Laptool and DETR, achieves a superior mAP of 73.74 at IoU 0.5 on a dataset of 615 images.
arXiv Detail & Related papers (2025-01-05T18:18:52Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - LLaVA-Surg: Towards Multimodal Surgical Assistant via Structured Surgical Video Learning [15.646322352232819]
We create a new dataset, Surg-QA, consisting of 102,000 surgical video-instruction pairs.
We propose a novel two-stage question-answer generation pipeline with LLM to learn surgical knowledge.
We train LLaVA-Surg, a novel vision-language conversational assistant capable of answering open-ended questions about surgical videos.
arXiv Detail & Related papers (2024-08-15T07:00:20Z) - EndoGSLAM: Real-Time Dense Reconstruction and Tracking in Endoscopic Surgeries using Gaussian Splatting [53.38166294158047]
EndoGSLAM is an efficient approach for endoscopic surgeries, which integrates streamlined representation and differentiable Gaussianization.
Experiments show that EndoGSLAM achieves a better trade-off between intraoperative availability and reconstruction quality than traditional or neural SLAM approaches.
arXiv Detail & Related papers (2024-03-22T11:27:43Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - LLM-Assisted Multi-Teacher Continual Learning for Visual Question Answering in Robotic Surgery [57.358568111574314]
Patient data privacy often restricts the availability of old data when updating the model.
Prior CL studies overlooked two vital problems in the surgical domain.
This paper proposes addressing these problems with a multimodal large language model (LLM) and an adaptive weight assignment methodology.
arXiv Detail & Related papers (2024-02-26T15:35:24Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - SurgMAE: Masked Autoencoders for Long Surgical Video Analysis [4.866110274299399]
Masked autoencoders (MAE) got the attention in self-supervised paradigm for Vision Transformers (ViTs)
In this paper, we first investigate whether MAE can learn transferrable representations in surgical video domain.
We propose SurgMAE, which is a novel architecture with a masking strategy on sampling high-temporal tokens for MAE.
arXiv Detail & Related papers (2023-05-19T06:12:50Z) - LoViT: Long Video Transformer for Surgical Phase Recognition [59.06812739441785]
We present a two-stage method, called Long Video Transformer (LoViT) for fusing short- and long-term temporal information.
Our approach outperforms state-of-the-art methods on the Cholec80 and AutoLaparo datasets consistently.
arXiv Detail & Related papers (2023-05-15T20:06:14Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
We present a multi-camera capture setup consisting of static and head-mounted cameras.
Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.
Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - AutoLaparo: A New Dataset of Integrated Multi-tasks for Image-guided
Surgical Automation in Laparoscopic Hysterectomy [42.20922574566824]
We present and release the first integrated dataset with multiple image-based perception tasks to facilitate learning-based automation in hysterectomy surgery.
Our AutoLaparo dataset is developed based on full-length videos of entire hysterectomy procedures.
Specifically, three different yet highly correlated tasks are formulated in the dataset, including surgical workflow recognition, laparoscope motion prediction, and instrument and key anatomy segmentation.
arXiv Detail & Related papers (2022-08-03T13:17:23Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
This paper presents CholecTriplet 2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos.
We present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
A total of 4 baseline methods and 19 new deep learning algorithms are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%.
arXiv Detail & Related papers (2022-04-10T18:51:55Z) - Automatic Operating Room Surgical Activity Recognition for
Robot-Assisted Surgery [1.1033115844630357]
We investigate automatic surgical activity recognition in robot-assisted operations.
We collect the first large-scale dataset including 400 full-length multi-perspective videos.
We densely annotate the videos with 10 most recognized and clinically relevant classes of activities.
arXiv Detail & Related papers (2020-06-29T16:30:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.