EndoGSLAM: Real-Time Dense Reconstruction and Tracking in Endoscopic Surgeries using Gaussian Splatting
- URL: http://arxiv.org/abs/2403.15124v1
- Date: Fri, 22 Mar 2024 11:27:43 GMT
- Title: EndoGSLAM: Real-Time Dense Reconstruction and Tracking in Endoscopic Surgeries using Gaussian Splatting
- Authors: Kailing Wang, Chen Yang, Yuehao Wang, Sikuang Li, Yan Wang, Qi Dou, Xiaokang Yang, Wei Shen,
- Abstract summary: EndoGSLAM is an efficient approach for endoscopic surgeries, which integrates streamlined representation and differentiable Gaussianization.
Experiments show that EndoGSLAM achieves a better trade-off between intraoperative availability and reconstruction quality than traditional or neural SLAM approaches.
- Score: 53.38166294158047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise camera tracking, high-fidelity 3D tissue reconstruction, and real-time online visualization are critical for intrabody medical imaging devices such as endoscopes and capsule robots. However, existing SLAM (Simultaneous Localization and Mapping) methods often struggle to achieve both complete high-quality surgical field reconstruction and efficient computation, restricting their intraoperative applications among endoscopic surgeries. In this paper, we introduce EndoGSLAM, an efficient SLAM approach for endoscopic surgeries, which integrates streamlined Gaussian representation and differentiable rasterization to facilitate over 100 fps rendering speed during online camera tracking and tissue reconstructing. Extensive experiments show that EndoGSLAM achieves a better trade-off between intraoperative availability and reconstruction quality than traditional or neural SLAM approaches, showing tremendous potential for endoscopic surgeries. The project page is at https://EndoGSLAM.loping151.com
Related papers
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - Deep intra-operative illumination calibration of hyperspectral cameras [73.08443963791343]
Hyperspectral imaging (HSI) is emerging as a promising novel imaging modality with various potential surgical applications.
We show that dynamically changing lighting conditions in the operating room dramatically affect the performance of HSI applications.
We propose a novel learning-based approach to automatically recalibrating hyperspectral images during surgery.
arXiv Detail & Related papers (2024-09-11T08:30:03Z) - BodySLAM: A Generalized Monocular Visual SLAM Framework for Surgical Applications [0.0]
This study presents BodySLAM, a robust deep learning-based MVSLAM approach that addresses these challenges through three key components.
CycleVO is a novel unsupervised monocular pose estimation module; the integration of the state-of-the-art Zoe architecture for monocular depth estimation; and a 3D reconstruction module creating a coherent surgical map.
Results demonstrate that CycleVO exhibited competitive performance with the lowest inference time among pose estimation methods, while maintaining robust generalization capabilities.
arXiv Detail & Related papers (2024-08-06T10:13:57Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
Reconstruction of endoscopic scenes is an important asset for various medical applications, from post-surgery analysis to educational training.
We adress the challenging setup of a moving endoscope within a highly dynamic environment of deforming tissue.
We propose an implicit scene separation into multiple overlapping 4D neural radiance fields (NeRFs) and a progressive optimization scheme jointly optimizing for reconstruction and camera poses from scratch.
This improves the ease-of-use and allows to scale reconstruction capabilities in time to process surgical videos of 5,000 frames and more; an improvement of more than ten times compared to the state of the art while being agnostic to external tracking information
arXiv Detail & Related papers (2024-03-18T19:13:02Z) - EndoGaussians: Single View Dynamic Gaussian Splatting for Deformable
Endoscopic Tissues Reconstruction [5.694872363688119]
We introduce EndoGaussians, a novel approach that employs Gaussian Splatting for dynamic endoscopic 3D reconstruction.
Our method sets new state-of-the-art standards, as demonstrated by quantitative assessments on various endoscope datasets.
arXiv Detail & Related papers (2024-01-24T10:27:50Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Phase-Specific Augmented Reality Guidance for Microscopic Cataract
Surgery Using Long-Short Spatiotemporal Aggregation Transformer [14.568834378003707]
Phaemulsification cataract surgery (PCS) is a routine procedure using a surgical microscope.
PCS guidance systems extract valuable information from surgical microscopic videos to enhance proficiency.
Existing PCS guidance systems suffer from non-phasespecific guidance, leading to redundant visual information.
We propose a novel phase-specific augmented reality (AR) guidance system, which offers tailored AR information corresponding to the recognized surgical phase.
arXiv Detail & Related papers (2023-09-11T02:56:56Z) - NanoNet: Real-Time Polyp Segmentation in Video Capsule Endoscopy and
Colonoscopy [0.6125117548653111]
We propose NanoNet, a novel architecture for the segmentation of video capsule endoscopy and colonoscopy images.
Our proposed architecture allows real-time performance and has higher segmentation accuracy compared to other more complex ones.
arXiv Detail & Related papers (2021-04-22T15:40:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.