論文の概要: SemEval-2025 Task 9: The Food Hazard Detection Challenge
- arxiv url: http://arxiv.org/abs/2503.19800v1
- Date: Tue, 25 Mar 2025 16:09:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:50:08.218027
- Title: SemEval-2025 Task 9: The Food Hazard Detection Challenge
- Title(参考訳): SemEval-2025 Task 9: the Food Hazard Detection Challenge
- Authors: Korbinian Randl, John Pavlopoulos, Aron Henriksson, Tony Lindgren, Juli Bakagianni,
- Abstract要約: 長い尾の分布クラスを用いたテキストベースの食害予測について検討する。
この結果から,大規模言語モデル生成合成データが長期分布のオーバーサンプリングに有効であることが示唆された。
- 参考スコア(独自算出の注目度): 2.7268409633809907
- License:
- Abstract: In this challenge, we explored text-based food hazard prediction with long tail distributed classes. The task was divided into two subtasks: (1) predicting whether a web text implies one of ten food-hazard categories and identifying the associated food category, and (2) providing a more fine-grained classification by assigning a specific label to both the hazard and the product. Our findings highlight that large language model-generated synthetic data can be highly effective for oversampling long-tail distributions. Furthermore, we find that fine-tuned encoder-only, encoder-decoder, and decoder-only systems achieve comparable maximum performance across both subtasks. During this challenge, we gradually released (under CC BY-NC-SA 4.0) a novel set of 6,644 manually labeled food-incident reports.
- Abstract(参考訳): この課題では,長い尾の分布クラスを用いたテキストベースの食害予測について検討した。
課題は,(1)Webテキストが10種類の食品ハザードカテゴリーの1つを意味するかどうかを予測し,関連食品カテゴリを識別すること,(2)特定のラベルを危険と製品の両方に割り当てることにより,よりきめ細かな分類を提供すること,の2つのサブタスクに分けられた。
この結果から,大規模言語モデル生成合成データが長期分布のオーバーサンプリングに有効であることが示唆された。
さらに、微調整エンコーダのみ、エンコーダのみ、デコーダのみのシステムが、両方のサブタスクで同等の最大性能を実現する。
CC BY-NC-SA 4.0で6,644件の食品事故報告を手作業で作成した。
関連論文リスト
- Enhancing Prohibited Item Detection through X-ray-Specific Augmentation and Contextual Feature Integration [81.11400642272976]
X線は、長い尾の分布とX線イメージングの特徴のために、アイテム検出が禁止されている。
コピーペーストやミックスアップのような従来のデータ拡張戦略は、まれなアイテムの検出を改善するのに効果がない。
これらの課題に対処するために,X-ray Imaging-driven Detection Network (XIDNet)を提案する。
論文 参考訳(メタデータ) (2024-11-27T06:13:56Z) - A Knowledge-Informed Large Language Model Framework for U.S. Nuclear Power Plant Shutdown Initiating Event Classification for Probabilistic Risk Assessment [6.200373536860575]
本研究では,知識インフォームド・機械学習・モードを組み込んで非SDIEをプリスクリーンするハイブリッド・パイプラインと,SDIEを4つのタイプに分類する大規模言語モデル(LLM)を提案する。
提案手法は,精度,リコール率,F1スコア,平均精度を用いて,10,928イベントのデータセットを用いて評価した。
論文 参考訳(メタデータ) (2024-09-30T20:35:03Z) - RoDE: Linear Rectified Mixture of Diverse Experts for Food Large Multi-Modal Models [96.43285670458803]
Uni-Foodは、さまざまな食品ラベルを持つ10万以上の画像からなる統合食品データセットである。
Uni-Foodは、食品データ分析に対するより包括的なアプローチを提供するように設計されている。
本稿では,食品関連マルチタスキングの課題に対処するため,新しいリニア・リクティフィケーション・ミックス・オブ・ディバース・エキスパート (RoDE) アプローチを提案する。
論文 参考訳(メタデータ) (2024-07-17T16:49:34Z) - AISPACE at SemEval-2024 task 8: A Class-balanced Soft-voting System for Detecting Multi-generator Machine-generated Text [0.0]
SemEval-2024 Task 8は、人書きテキストと機械生成テキストを検出するための課題を提供する。
本稿では,主にSubtask Bを扱うシステムを提案する。
これは、与えられた全文が人間によって書かれたか、あるいは、実際にはマルチクラスのテキスト分類タスクである特定のLarge Language Model (LLM)によって生成されるかを検出することを目的としている。
論文 参考訳(メタデータ) (2024-04-01T06:25:47Z) - FoodLMM: A Versatile Food Assistant using Large Multi-modal Model [96.76271649854542]
大規模マルチモーダルモデル(LMM)は多くの視覚言語タスクにおいて顕著な進歩を遂げている。
本稿では,多機能なLMMに基づく多目的食品アシスタントであるFoodLMMを提案する。
本稿では,食品の栄養価と複数のセグメンテーションマスクを予測するために,一連の新しいタスク固有のトークンとヘッドを導入する。
論文 参考訳(メタデータ) (2023-12-22T11:56:22Z) - Ambiguity-Resistant Semi-Supervised Learning for Dense Object Detection [98.66771688028426]
本研究では,一段階検出器のためのAmbiguity-Resistant Semi-supervised Learning (ARSL)を提案する。
擬似ラベルの分類とローカライズ品質を定量化するために,JCE(Joint-Confidence Estimation)を提案する。
ARSLは、曖昧さを効果的に軽減し、MS COCOおよびPASCALVOC上で最先端のSSOD性能を達成する。
論文 参考訳(メタデータ) (2023-03-27T07:46:58Z) - TWEET-FID: An Annotated Dataset for Multiple Foodborne Illness Detection
Tasks [14.523433519237607]
食中毒は深刻なが予防可能な公衆衛生上の問題である。
効果的なアウトブレイク検出モデルを開発するためにラベル付きデータセットが不足している。
TWEET-FIDは、食品性疾患検出タスクのための、初めて公開された注釈付きデータセットである。
論文 参考訳(メタデータ) (2022-05-22T03:47:18Z) - TASTEset -- Recipe Dataset and Food Entities Recognition Benchmark [1.0569625612398386]
NERモデルは、レシピの処理に役立つ様々なタイプのエンティティを発見または推測することが期待されている。
データセットは700のレシピで構成され、13,000以上のエンティティを抽出する。
私たちは、名前付きエンティティ認識モデルの最先端のベースラインをいくつか提供しています。
論文 参考訳(メタデータ) (2022-04-16T10:52:21Z) - Detecting Handwritten Mathematical Terms with Sensor Based Data [71.84852429039881]
本稿では,手書きの数学的用語を自動分類する,スタビロによるUbiComp 2021チャレンジの解を提案する。
入力データセットには異なるライターのデータが含まれており、ラベル文字列は合計15の異なる文字から構成されている。
論文 参考訳(メタデータ) (2021-09-12T19:33:34Z) - Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images
and Recipes with Semantic Consistency and Attention Mechanism [70.85894675131624]
画像とレシピを共通の特徴空間に埋め込み、対応する画像とレシピの埋め込みが互いに近接するように学習する。
本稿では,2つのモダリティの埋め込みを正規化するためのセマンティック・一貫性とアテンション・ベース・ネットワーク(SCAN)を提案する。
食品画像や調理レシピの最先端のクロスモーダル検索戦略を,かなりの差で達成できることが示される。
論文 参考訳(メタデータ) (2020-03-09T07:41:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。