論文の概要: Guarding against artificial intelligence--hallucinated citations: the case for full-text reference deposit
- arxiv url: http://arxiv.org/abs/2503.19848v1
- Date: Tue, 25 Mar 2025 17:12:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:54:20.802620
- Title: Guarding against artificial intelligence--hallucinated citations: the case for full-text reference deposit
- Title(参考訳): 人工知能に対する保護--全文参照預金の場合-
- Authors: Alex Glynn,
- Abstract要約: ジャーナルは、著者が引用されたソースの完全なテキストと原稿を提出する必要がある。
この解決策は、著者や編集者の一部に限定的な追加作業を必要とする一方で、幻覚された参照に対して効果的にジャーナリズムを免疫する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The tendency of generative artificial intelligence (AI) systems to "hallucinate" false information is well-known; AI-generated citations to non-existent sources have made their way into the reference lists of peer-reviewed publications. Here, I propose a solution to this problem, taking inspiration from the Transparency and Openness Promotion (TOP) data sharing guidelines, the clash of generative AI with the American judiciary, and the precedent set by submissions of prior art to the United States Patent and Trademark Office. Journals should require authors to submit the full text of each cited source along with their manuscripts, thereby preventing authors from citing any material whose full text they cannot produce. This solution requires limited additional work on the part of authors or editors while effectively immunizing journals against hallucinated references.
- Abstract(参考訳): 生成人工知能(AI)システムが偽情報を「幻滅させる」傾向はよく知られており、既存の情報源へのAIによる引用は査読された論文の参照リストに載っている。
本稿では,TOP(Transparency and Openness promoted)データ共有ガイドラインから着想を得た,米国司法長官との共謀による生成AIの衝突,米国特許商標庁への先行技術提出による先例を参考に,この問題に対する解決策を提案する。
ジャーナルは、著者が引用された各ソースの完全なテキストと原稿を提出する必要があるので、著者が作成できない全テキストを引用することを妨げる。
この解決策は、著者や編集者の一部に限定的な追加作業を必要とする一方で、幻覚された参照に対して効果的にジャーナリズムを免疫する。
関連論文リスト
- Suspected Undeclared Use of Artificial Intelligence in the Academic Literature: An Analysis of the Academ-AI Dataset [0.0]
アカデミックAIは、学術文献における未宣言のAI使用の疑いのある事例を文書化している。
宣言されていないAIは、引用基準が高く、記事処理料金が高いジャーナルに現れるようだ。
論文 参考訳(メタデータ) (2024-11-20T21:29:36Z) - Tackling GenAI Copyright Issues: Originality Estimation and Genericization [25.703494724823756]
本稿では, 生成モデルの出力を一般化し, 著作権物質を模倣しにくくする汎用化手法を提案する。
そこで本研究では,ジェネリゼーション手法と既存の緩和手法を組み合わせたPrepreGenを紹介する。
論文 参考訳(メタデータ) (2024-06-05T14:58:32Z) - Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools [32.78336381381673]
本稿では,AI駆動型法律研究ツールの事前登録による実証評価について報告する。
LexisNexis(Lexis+ AI)とThomson Reuters(Westlaw AI-Assisted ResearchとAsk Practical Law AI)によるAI研究ツールは、それぞれ17%から33%の時間で幻覚化している。
それは、AIのアウトプットを監督し検証する法的専門家の責任を知らせる証拠を提供する。
論文 参考訳(メタデータ) (2024-05-30T17:56:05Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
著作権法は、クリエイティブ作品を再生、配布、収益化する排他的権利をクリエイターに与えている。
テキスト・ツー・イメージ・ジェネレーションの最近の進歩は、著作権の執行に重大な課題をもたらしている。
CLIP、ChatGPT、拡散モデルを調和させてデータセットをキュレートする新しいパイプラインを導入する。
論文 参考訳(メタデータ) (2024-01-04T11:14:01Z) - Improving Wikipedia Verifiability with AI [116.69749668874493]
私たちはSideと呼ばれるニューラルネットワークベースのシステムを開発し、彼らの主張を支持できないWikipediaの引用を識別する。
本誌の最初の引用レコメンデーションは、既存のWikipediaの引用よりも60%多い選好を集めている。
以上の結果から,Wikipediaの妥当性を高めるために,AIベースのシステムを人間と共同で活用できることが示唆された。
論文 参考訳(メタデータ) (2022-07-08T15:23:29Z) - Towards generating citation sentences for multiple references with
intent control [86.53829532976303]
We build a novel generation model with the Fusion-in-Decoder approach to handlee with multiple long inputs。
実験により,提案手法は引用文を生成するためのより包括的な特徴を提供することが示された。
論文 参考訳(メタデータ) (2021-12-02T15:32:24Z) - Tortured phrases: A dubious writing style emerging in science. Evidence
of critical issues affecting established journals [69.76097138157816]
確率的テキストジェネレータは10年以上にわたって偽の科学論文の作成に使われてきた。
複雑なAIを利用した生成技術は、人間のものと区別できないテキストを生成する。
一部のウェブサイトはテキストを無料で書き直し、拷問されたフレーズでいっぱいのgobbledegookを生成する。
論文 参考訳(メタデータ) (2021-07-12T20:47:08Z) - A Token-level Reference-free Hallucination Detection Benchmark for
Free-form Text Generation [50.55448707570669]
本稿ではトークンレベルの参照なし幻覚検出タスクとHaDesというアノテーション付きデータセットを提案する。
このデータセットを作成するために、まず英語のウィキペディアから抽出された大量のテキストセグメントを摂り込み、それからクラウドソースアノテーションで検証する。
論文 参考訳(メタデータ) (2021-04-18T04:09:48Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。