論文の概要: CausalRAG: Integrating Causal Graphs into Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2503.19878v1
- Date: Tue, 25 Mar 2025 17:43:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:50:51.220820
- Title: CausalRAG: Integrating Causal Graphs into Retrieval-Augmented Generation
- Title(参考訳): CausalRAG: 検索拡張ジェネレーションへの因果グラフの統合
- Authors: Nengbo Wang, Xiaotian Han, Jagdip Singh, Jing Ma, Vipin Chaudhary,
- Abstract要約: CausalRAGは因果グラフを検索プロセスに組み込む新しいフレームワークである。
因果関係の構築と追跡により、CausalRAGは文脈連続性を保ち、検索精度を向上させる。
本研究は,因果推論における接地探索が,知識集約型タスクに有望なアプローチをもたらすことを示唆している。
- 参考スコア(独自算出の注目度): 11.265999775635823
- License:
- Abstract: Large language models (LLMs) have revolutionized natural language processing (NLP), particularly through Retrieval-Augmented Generation (RAG), which enhances LLM capabilities by integrating external knowledge. However, traditional RAG systems face critical limitations, including disrupted contextual integrity due to text chunking, and over-reliance on semantic similarity for retrieval. To address these issues, we propose CausalRAG, a novel framework that incorporates causal graphs into the retrieval process. By constructing and tracing causal relationships, CausalRAG preserves contextual continuity and improves retrieval precision, leading to more accurate and interpretable responses. We evaluate CausalRAG against regular RAG and graph-based RAG approaches, demonstrating its superiority across several metrics. Our findings suggest that grounding retrieval in causal reasoning provides a promising approach to knowledge-intensive tasks.
- Abstract(参考訳): 大規模言語モデル (LLMs) は自然言語処理 (NLP) に革命をもたらした。
しかし、従来のRAGシステムは、テキストチャンキングによるコンテキスト整合性の破壊や、検索における意味的類似性への過度な依存など、重要な制約に直面している。
これらの問題に対処するために,因果グラフを検索プロセスに組み込んだ新しいフレームワークCausalRAGを提案する。
因果関係の構築と追跡により、CausalRAGは文脈連続性を保ち、検索精度を改善し、より正確で解釈可能な応答をもたらす。
我々はCausalRAGを正規RAGおよびグラフベースRAGアプローチに対して評価し、いくつかの指標においてその優位性を実証した。
本研究は,因果推論における接地探索が,知識集約型タスクに有望なアプローチをもたらすことを示唆している。
関連論文リスト
- Knowledge Graph-Guided Retrieval Augmented Generation [34.83235788116369]
本稿では,知識グラフを用いた検索検索生成フレームワークを提案する。
KG$2$RAGは、チャンク間の事実レベルの関係を提供し、得られた結果の多様性と一貫性を改善する。
論文 参考訳(メタデータ) (2025-02-08T02:14:31Z) - DeepRAG: Thinking to Retrieval Step by Step for Large Language Models [92.87532210660456]
我々はマルコフ決定過程(MDP)として検索強化推論をモデル化するDeepRAGを提案する。
クエリを反復的に分解することで、DeepRAGは外部知識を取得するか、あるいは各ステップでパラメトリック推論に依存するかを動的に決定する。
実験の結果、DeepRAGは解答精度を21.99%向上させ、検索強化推論の最適化の有効性を示した。
論文 参考訳(メタデータ) (2025-02-03T08:22:45Z) - CG-RAG: Research Question Answering by Citation Graph Retrieval-Augmented LLMs [9.718354494802002]
CG-RAG(Contextualized Graph Retrieval-Augmented Generation)は、グラフ構造に疎密な検索信号を統合する新しいフレームワークである。
まず、引用グラフの文脈グラフ表現を提案し、文書内および文書間の明示的および暗黙的な接続を効果的にキャプチャする。
次にLexical-Semantic Graph Retrieval(LeSeGR)を提案する。
第3に,検索したグラフ構造化情報を利用した文脈認識生成手法を提案する。
論文 参考訳(メタデータ) (2025-01-25T04:18:08Z) - Causal Graphs Meet Thoughts: Enhancing Complex Reasoning in Graph-Augmented LLMs [4.701165676405066]
関連情報を検索するだけでなく、因果推論や説明可能性の提供も重要である。
本稿では,大きな知識グラフをフィルタして原因効果エッジを強調する新しいパイプラインを提案する。
医学的質問応答タスクの実験では、一貫した利得を示し、最大10%の絶対的な改善がある。
論文 参考訳(メタデータ) (2025-01-24T19:31:06Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
既存の大規模言語モデル(LLM)は、例外的な問題解決能力を示すが、複雑な推論タスクに苦労する可能性がある。
検索情報を統合した新しいRAG手法である textbfRAG-Star を提案する。
Llama-3.1-8B-Instruct と GPT-4o を併用した実験により,RAG-Star は従来のRAG と推理法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-12-17T13:05:36Z) - Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) は、大規模言語モデル(LLM)の限界を軽減し、ドメイン固有の質問に答える手段として広く採用されている。
これまでの研究は主に、取得したデータチャンクの精度と品質を改善し、生成パイプライン全体のパフォーマンスを向上させることに重点を置いてきた。
オープンドメイン質問応答における無関係情報検索の効果について検討し,LLM出力の品質に対する顕著な有害な影響を明らかにする。
論文 参考訳(メタデータ) (2024-11-25T06:48:38Z) - Retrieving, Rethinking and Revising: The Chain-of-Verification Can Improve Retrieval Augmented Generation [38.80878966092216]
大規模言語モデル(LLM)の強化を目的とした最近の検索拡張生成(RAG)
本稿では,外部検索の正しさと内部生成の整合性を高めるためのチェーン・オブ・バリフィケーション(CoV-RAG)を提案する。
論文 参考訳(メタデータ) (2024-10-08T08:34:54Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - DuetRAG: Collaborative Retrieval-Augmented Generation [57.440772556318926]
協調検索拡張生成フレームワークであるDuetRAGが提案されている。
ブートストラップの哲学はドメインフィニングとRAGモデルを同時に統合することである。
論文 参考訳(メタデータ) (2024-05-12T09:48:28Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。