論文の概要: CausalRAG: Integrating Causal Graphs into Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2503.19878v2
- Date: Tue, 29 Apr 2025 03:11:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 20:17:25.710129
- Title: CausalRAG: Integrating Causal Graphs into Retrieval-Augmented Generation
- Title(参考訳): CausalRAG: 検索拡張ジェネレーションへの因果グラフの統合
- Authors: Nengbo Wang, Xiaotian Han, Jagdip Singh, Jing Ma, Vipin Chaudhary,
- Abstract要約: CausalRAGは因果グラフを検索プロセスに組み込む新しいフレームワークである。
因果関係の構築と追跡により、CausalRAGは文脈連続性を保ち、検索精度を向上させる。
本研究は,因果推論における接地探索が,知識集約型タスクに有望なアプローチをもたらすことを示唆している。
- 参考スコア(独自算出の注目度): 11.265999775635823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have revolutionized natural language processing (NLP), particularly through Retrieval-Augmented Generation (RAG), which enhances LLM capabilities by integrating external knowledge. However, traditional RAG systems face critical limitations, including disrupted contextual integrity due to text chunking, and over-reliance on semantic similarity for retrieval. To address these issues, we propose CausalRAG, a novel framework that incorporates causal graphs into the retrieval process. By constructing and tracing causal relationships, CausalRAG preserves contextual continuity and improves retrieval precision, leading to more accurate and interpretable responses. We evaluate CausalRAG against regular RAG and graph-based RAG approaches, demonstrating its superiority across several metrics. Our findings suggest that grounding retrieval in causal reasoning provides a promising approach to knowledge-intensive tasks.
- Abstract(参考訳): 大規模言語モデル (LLMs) は自然言語処理 (NLP) に革命をもたらした。
しかし、従来のRAGシステムは、テキストチャンキングによるコンテキスト整合性の破壊や、検索における意味的類似性への過度な依存など、重要な制約に直面している。
これらの問題に対処するために,因果グラフを検索プロセスに組み込んだ新しいフレームワークCausalRAGを提案する。
因果関係の構築と追跡により、CausalRAGは文脈連続性を保ち、検索精度を改善し、より正確で解釈可能な応答をもたらす。
我々はCausalRAGを正規RAGおよびグラフベースRAGアプローチに対して評価し、いくつかの指標においてその優位性を実証した。
本研究は,因果推論における接地探索が,知識集約型タスクに有望なアプローチをもたらすことを示唆している。
関連論文リスト
- AlignRAG: An Adaptable Framework for Resolving Misalignments in Retrieval-Aware Reasoning of RAG [61.28113271728859]
Retrieval-augmented Generation (RAG) は知識基底テキスト生成の基礎パラダイムとして登場した。
既存のRAGパイプラインは、しばしば、推論軌跡が、検索されたコンテンツによって課される明らかな制約と一致しないことを保証するのに失敗する。
そこで我々は,反復的批判駆動アライメントステップによる推論ミスアライメントを緩和する新しいテストタイムフレームワークであるAlignRAGを提案する。
論文 参考訳(メタデータ) (2025-04-21T04:56:47Z) - CDF-RAG: Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation [3.8808821719659763]
適応検索拡張生成(CDF-RAG)のための因果動的フィードバックを導入する。
CDF-RAGは、クエリを反復的に洗練し、構造化因果グラフを検索し、相互接続された知識ソース間のマルチホップ因果推論を可能にする。
我々は,CDF-RAGを4つの多様なデータセット上で評価し,既存のRAG法よりも応答精度と因果正性を向上させる能力を示した。
論文 参考訳(メタデータ) (2025-04-17T01:15:13Z) - Improving Multilingual Retrieval-Augmented Language Models through Dialectic Reasoning Argumentations [65.11348389219887]
そこで,Dialectic-RAG(Dialectic-RAG, DRAG)を提案する。
我々は、文脈内学習戦略と、より小さなモデルをインストラクションするための実演の構築の両方において、我々のフレームワークが与える影響を示す。
論文 参考訳(メタデータ) (2025-04-07T06:55:15Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
本稿では,選択的検索と知識の言語化を結合する新しいフレームワークであるSelf-Routing RAG(SR-RAG)を提案する。
SR-RAGは、LLMが外部検索と独自のパラメトリック知識の言語化を動的に決定できるようにする。
近接探索による動的知識源推定を導入し,知識源決定の精度を向上させる。
論文 参考訳(メタデータ) (2025-04-01T17:59:30Z) - Pseudo-Knowledge Graph: Meta-Path Guided Retrieval and In-Graph Text for RAG-Equipped LLM [8.941718961724984]
Pseudo-Knowledge Graph (PKG)フレームワークはメタパス検索、イングラフテキスト、ベクトル検索を大規模言語モデルに統合する。
PKGはより豊かな知識表現を提供し、情報検索の精度を向上させる。
論文 参考訳(メタデータ) (2025-03-01T02:39:37Z) - Knowledge Graph-Guided Retrieval Augmented Generation [34.83235788116369]
本稿では,知識グラフを用いた検索検索生成フレームワークを提案する。
KG$2$RAGは、チャンク間の事実レベルの関係を提供し、得られた結果の多様性と一貫性を改善する。
論文 参考訳(メタデータ) (2025-02-08T02:14:31Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
既存の大規模言語モデル(LLM)は、例外的な問題解決能力を示すが、複雑な推論タスクに苦労する可能性がある。
検索情報を統合した新しいRAG手法である textbfRAG-Star を提案する。
Llama-3.1-8B-Instruct と GPT-4o を併用した実験により,RAG-Star は従来のRAG と推理法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-12-17T13:05:36Z) - Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) は、大規模言語モデル(LLM)の限界を軽減し、ドメイン固有の質問に答える手段として広く採用されている。
これまでの研究は主に、取得したデータチャンクの精度と品質を改善し、生成パイプライン全体のパフォーマンスを向上させることに重点を置いてきた。
オープンドメイン質問応答における無関係情報検索の効果について検討し,LLM出力の品質に対する顕著な有害な影響を明らかにする。
論文 参考訳(メタデータ) (2024-11-25T06:48:38Z) - Retrieving, Rethinking and Revising: The Chain-of-Verification Can Improve Retrieval Augmented Generation [38.80878966092216]
大規模言語モデル(LLM)の強化を目的とした最近の検索拡張生成(RAG)
本稿では,外部検索の正しさと内部生成の整合性を高めるためのチェーン・オブ・バリフィケーション(CoV-RAG)を提案する。
論文 参考訳(メタデータ) (2024-10-08T08:34:54Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - DuetRAG: Collaborative Retrieval-Augmented Generation [57.440772556318926]
協調検索拡張生成フレームワークであるDuetRAGが提案されている。
ブートストラップの哲学はドメインフィニングとRAGモデルを同時に統合することである。
論文 参考訳(メタデータ) (2024-05-12T09:48:28Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。