AI threats to national security can be countered through an incident regime
- URL: http://arxiv.org/abs/2503.19887v5
- Date: Wed, 16 Apr 2025 09:24:21 GMT
- Title: AI threats to national security can be countered through an incident regime
- Authors: Alejandro Ortega,
- Abstract summary: We propose a legally mandated post-deployment AI incident regime that aims to counter potential national security threats from AI systems.<n>Our proposed AI incident regime is split into three phases. The first phase revolves around a novel operationalization of what counts as an 'AI incident'<n>The second and third phases spell out that AI providers should notify a government agency about incidents, and that the government agency should be involved in amending AI providers' security and safety procedures.
- Score: 55.2480439325792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in AI capabilities has heightened concerns that AI systems could pose a threat to national security, for example, by making it easier for malicious actors to perform cyberattacks on critical national infrastructure, or through loss of control of autonomous AI systems. In parallel, federal legislators in the US have proposed nascent 'AI incident regimes' to identify and counter similar threats. In this paper, we consolidate these two trends and present a timely proposal for a legally mandated post-deployment AI incident regime that aims to counter potential national security threats from AI systems. We start the paper by introducing the concept of 'security-critical' to describe sectors that pose extreme risks to national security, before arguing that 'security-critical' describes civilian nuclear power, aviation, life science dual-use research of concern, and frontier AI development. We then present in detail our AI incident regime proposal, justifying each component of the proposal by demonstrating its similarity to US domestic incident regimes in other 'security-critical' sectors. Finally, we sketch a hypothetical scenario where our proposed AI incident regime deals with an AI cyber incident. Our proposed AI incident regime is split into three phases. The first phase revolves around a novel operationalization of what counts as an 'AI incident' and we suggest that AI providers must create a 'national security case' before deploying a frontier AI system. The second and third phases spell out that AI providers should notify a government agency about incidents, and that the government agency should be involved in amending AI providers' security and safety procedures, in order to counter future threats to national security.
Related papers
- Frontier AI's Impact on the Cybersecurity Landscape [42.771086928042315]
This paper presents an in-depth analysis of frontier AI's impact on cybersecurity.
We first define and categorize the marginal risks of frontier AI in cybersecurity.
We then systemically analyze the current and future impacts of frontier AI in cybersecurity.
arXiv Detail & Related papers (2025-04-07T18:25:18Z) - In-House Evaluation Is Not Enough: Towards Robust Third-Party Flaw Disclosure for General-Purpose AI [93.33036653316591]
We call for three interventions to advance system safety.
First, we propose using standardized AI flaw reports and rules of engagement for researchers.
Second, we propose GPAI system providers adopt broadly-scoped flaw disclosure programs.
Third, we advocate for the development of improved infrastructure to coordinate distribution of flaw reports.
arXiv Detail & Related papers (2025-03-21T05:09:46Z) - Position: A taxonomy for reporting and describing AI security incidents [57.98317583163334]
We argue that specific are required to describe and report security incidents of AI systems.<n>Existing frameworks for either non-AI security or generic AI safety incident reporting are insufficient to capture the specific properties of AI security.
arXiv Detail & Related papers (2024-12-19T13:50:26Z) - AI Emergency Preparedness: Examining the federal government's ability to detect and respond to AI-related national security threats [0.2008854179910039]
Emergency preparedness can improve the government's ability to monitor and predict AI progress.
We focus on three plausible risk scenarios: (1) loss of control (threats from a powerful AI system that becomes capable of escaping human control), (2) cybersecurity threats from malicious actors, and (3) biological weapons proliferation.
arXiv Detail & Related papers (2024-07-03T17:54:01Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - Taking control: Policies to address extinction risks from AI [0.0]
We argue that voluntary commitments from AI companies would be an inappropriate and insufficient response.
We describe three policy proposals that would meaningfully address the threats from advanced AI.
arXiv Detail & Related papers (2023-10-31T15:53:14Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - AI Deception: A Survey of Examples, Risks, and Potential Solutions [20.84424818447696]
This paper argues that a range of current AI systems have learned how to deceive humans.
We define deception as the systematic inducement of false beliefs in the pursuit of some outcome other than the truth.
arXiv Detail & Related papers (2023-08-28T17:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.