Predicted third-order sweet spots for phi-junction Josephson parametric amplifiers
- URL: http://arxiv.org/abs/2503.19891v1
- Date: Tue, 25 Mar 2025 17:53:33 GMT
- Title: Predicted third-order sweet spots for phi-junction Josephson parametric amplifiers
- Authors: Tasnum Reza, Sergey M. Frolov,
- Abstract summary: Hybrid superconductor-semiconductor nanowire Josephson junctions exhibit skewed and phi-shifted current phase relations.<n>A dominant third-order nonlinearity can be achieved by tuning the magnetic field to a sweet spot.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid superconductor-semiconductor nanowire Josephson junctions exhibit skewed and phi-shifted current phase relations when an in-plane magnetic field is applied along the weak link's spin-orbit effective field direction. These junctions can have an asymmetric Josephson potential with odd-order nonlinearities. A dominant third-order nonlinearity can be achieved by tuning the magnetic field to a sweet spot. Sweet spots persist when higher order Josephson harmonics are included. This makes it possible to have a single Josephson junction dipole element with three-wave mixing capability, which is favorable for pump-efficient amplification. Electrostatic gate tunability of the semiconductor weak link can make it operable within an extended range of working frequencies, and the inclusion of micromagnets can facilitate near-zero magnetic field operation.
Related papers
- Long-range interactions in Weyl dense atomic arrays protected from dissipation and disorder [41.94295877935867]
Long-range interactions are a key resource in many quantum phenomena and technologies.
We show how to design the polaritonic bands of these atomic metamaterials to feature a pair of frequency-isolated Weyl points.
These Weyl excitations can thus mediate interactions that are simultaneously long-range, due to their gapless nature; robust, due to the topological protection of Weyl points; and decoherence-free, due to their subradiant character.
arXiv Detail & Related papers (2024-06-18T20:15:16Z) - Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Ab-Initio Calculations of Nonlinear Susceptibility and Multi-Phonon Mixing Processes in a 2DEG-Piezoelectric Heterostructure [41.94295877935867]
Solid-state elastic-wave phonons are a promising platform for a wide range of quantum information applications.
We propose a general architecture using piezoelectric-semiconductor heterostructures.
We show that, for this system, the strong third-order nonlinearity could enable single-phonon Kerr shift in an acoustic cavity.
arXiv Detail & Related papers (2024-02-01T03:34:41Z) - Dissipationless Nonlinearity in Quantum Material Josephson Diodes [0.0]
Dissipationless nonlinearities for three-wave mixing are a key component of many superconducting quantum devices.
We develop an alternative approach to realize third-order nonlinearities from gate-tunable and intrinsically symmetry-broken quantum material Josephson junctions.
arXiv Detail & Related papers (2023-10-18T18:00:01Z) - Topological Josephson Junctions in the Integer Quantum Hall Regime [42.408991654684876]
tunable Josephson junctions (TJJs) are desirable platforms for investigating the anomalous Josephson effect and topological quantum insulator applications.
We propose a robust and electrostatically tunable TJJ by combining the physics of the integer quantum Hall (IQH) regime and of superconductors.
They are of particular relevance towards scalable and robust Andreev-qubit platforms, and also for efficient phase batteries.
arXiv Detail & Related papers (2022-11-04T16:45:07Z) - Tuning the inductance of Josephson junction arrays without SQUIDs [0.0]
It is customary to use superconducting quantum interference devices (SQUIDs) for implementing magnetic field-tunable inductors.
Here, we demonstrate an equivalent tunability in a (SQUID-free) array of single Al/AlOx/Al Josephson tunnel junctions.
arXiv Detail & Related papers (2022-10-21T17:20:08Z) - Magnetic-field-induced cavity protection for intersubband polaritons [52.77024349608834]
We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity.
The magnetic field changes the lineshape of the intersubband optical transition due to the roughness of the interface of the quantum well from a Lorentzian to a Gaussian one.
arXiv Detail & Related papers (2022-10-14T18:00:03Z) - Topological Josephson parametric amplifier array: A proposal for directional, broadband, and low-noise amplification [39.58317527488534]
Low-noise microwave amplifiers are crucial for detecting weak signals in fields such as quantum technology and radio astronomy.
We show that compact devices with few sites can achieve exceptional performance, with gains exceeding 20 dB over a bandwidth ranging from hundreds of MHz to GHz.
The device also operates near the quantum noise limit and provides topological protection against up to 15% fabrication disorder.
arXiv Detail & Related papers (2022-07-27T18:07:20Z) - A hybrid ferromagnetic transmon qubit: circuit design, feasibility and
detection protocols for magnetic fluctuations [45.82374977939355]
We show that the characteristic hysteretic behavior of the ferromagnetic barrier provides an alternative and intrinsically digital tuning of the qubit frequency by means of magnetic field pulses.
The possibility to use the qubit as a noise detector and its relevance to investigate the subtle interplay of magnetism and superconductivity is envisaged.
arXiv Detail & Related papers (2022-06-01T18:50:26Z) - Magnetic-field resilience of 3D transmons with thin-film Al/AlO$_x$/Al
Josephson junctions approaching 1 T [0.0]
We investigate the effect of in-plane magnetic fields up to 1 T on the spectrum and coherence times of thin-film 3D aluminum transmons.
Thin-film aluminum Josephson junctions are a suitable hardware for superconducting circuits in the high-magnetic-field regime.
arXiv Detail & Related papers (2021-11-01T17:43:15Z) - Geometric superinductance qubits: Controlling phase delocalization
across a single Josephson junction [0.0]
We present a large variety of qubits all stemming from the same circuit but with drastically different characteristic energy scales.
The use of a geometric inductor results in high precision of the inductive and capacitive energy as guaranteed by top-down lithography.
arXiv Detail & Related papers (2021-06-10T16:09:36Z) - Magnifying quantum phase fluctuations with Cooper-pair pairing [0.0]
We fabricate a generalized Josephson element that can be tuned in situ between one- and two-Cooper-pair tunneling.
We measure a tenfold suppression of flux sensitivity of the first transition energy, implying a twofold increase in the vacuum phase fluctuations.
arXiv Detail & Related papers (2020-10-29T11:15:22Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.