論文の概要: Body Discovery of Embodied AI
- arxiv url: http://arxiv.org/abs/2503.19941v1
- Date: Tue, 25 Mar 2025 09:21:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:22:18.763774
- Title: Body Discovery of Embodied AI
- Title(参考訳): 体操AIの身体発見
- Authors: Zhe Sun, Pengfei Tian, Xiaozhu Hu, Xiaoyu Zhao, Huiying Li, Zhenliang Zhang,
- Abstract要約: ボディディスカバリー・オブ・エボダイドAI(Body Discovery of Embodied AI)は、エンボディメントを認識し、神経信号機能を要約するタスクに焦点を当てている。
この課題は、AIボディの正確な定義と、動的環境における実施を識別する複雑なタスクを含んでいる。
仮想環境を用いたアルゴリズムのテストに適したシミュレータを開発した。
- 参考スコア(独自算出の注目度): 14.90599757805173
- License:
- Abstract: In the pursuit of realizing artificial general intelligence (AGI), the importance of embodied artificial intelligence (AI) becomes increasingly apparent. Following this trend, research integrating robots with AGI has become prominent. As various kinds of embodiments have been designed, adaptability to diverse embodiments will become important to AGI. We introduce a new challenge, termed "Body Discovery of Embodied AI", focusing on tasks of recognizing embodiments and summarizing neural signal functionality. The challenge encompasses the precise definition of an AI body and the intricate task of identifying embodiments in dynamic environments, where conventional approaches often prove inadequate. To address these challenges, we apply causal inference method and evaluate it by developing a simulator tailored for testing algorithms with virtual environments. Finally, we validate the efficacy of our algorithms through empirical testing, demonstrating their robust performance in various scenarios based on virtual environments.
- Abstract(参考訳): 人工知能(AGI)の実現を追求する中で、具体的人工知能(AI)の重要性が高まっている。
この傾向を受けて、ロボットとAGIを統合する研究が注目されている。
多様な実施形態がデザインされているため、多様な実施形態への適応性はAGIにとって重要である。
我々は、エンボディメントを認識し、神経信号機能を要約するタスクに焦点を当てた「身体的AIの身体発見」と呼ばれる新しい課題を導入する。
この課題は、AIボディの正確な定義と、従来のアプローチが不十分であることがしばしば証明される、動的環境における実施状況を特定する複雑なタスクを含んでいる。
これらの課題に対処するために,仮想環境を用いたアルゴリズムのテストに適したシミュレータを開発し,因果推論手法を適用して評価する。
最後に,本アルゴリズムの有効性を実証実験により検証し,仮想環境に基づく各種シナリオにおけるロバストな性能を実証する。
関連論文リスト
- Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
大規模言語モデル(LLM)に基づく人工知能技術は、特に感情分析においてゲームチェンジャーとなっている。
しかし、複雑なマルチモーダルデータを処理するための多様なAIモデルの統合と、それに伴う機能抽出の高コストは、大きな課題を呈している。
本研究では,様々なAIシステムにまたがるタスクを効率的に分散・解決するための協調型AIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:14:34Z) - Aligning Cyber Space with Physical World: A Comprehensive Survey on Embodied AI [129.08019405056262]
人工知能(Embodied AI)は、人工知能(AGI)の実現に不可欠である
MLMとWMは、その顕著な知覚、相互作用、推論能力のために、大きな注目を集めている。
本調査では,Embodied AIの最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2024-07-09T14:14:47Z) - Over the Edge of Chaos? Excess Complexity as a Roadblock to Artificial General Intelligence [4.901955678857442]
我々は、AIの性能が臨界複雑性しきい値を超えると不安定になるかもしれない複雑なシステムにおける位相遷移に類似した臨界点の存在を仮定した。
我々のシミュレーションは、AIシステムの複雑さの増加が、より高い臨界閾値を超え、予測不可能なパフォーマンス行動を引き起こすことを実証した。
論文 参考訳(メタデータ) (2024-07-04T05:46:39Z) - A call for embodied AI [1.7544885995294304]
我々は、人工知能の次の基本ステップとして、エンボディードAIを提案する。
Embodied AIの範囲を広げることで、認知アーキテクチャに基づく理論的枠組みを導入する。
このフレームワークはFristonのアクティブな推論原則と一致しており、EAI開発に対する包括的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-02-06T09:11:20Z) - Integration of cognitive tasks into artificial general intelligence test
for large models [54.72053150920186]
我々は、認知科学にインスパイアされた人工知能(AGI)テストの包括的な枠組みを提唱する。
認知科学に触発されたAGIテストは、結晶化インテリジェンス、流体インテリジェンス、社会インテリジェンス、エンボディドインテリジェンスを含む、すべてのインテリジェンスファセットを含んでいる。
論文 参考訳(メタデータ) (2024-02-04T15:50:42Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
物理仮想アマルガメーションの様々な形態を包含した統一表現を提供する対称現実感フレームワークを導入する。
我々は、対称現実の潜在的な応用を示すAI駆動型アクティブアシストサービスの例を提案する。
論文 参考訳(メタデータ) (2024-01-26T16:09:39Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
我々は,膨大なマルチモーダル(視覚的・テキスト的)データを事前学習した新しい基礎モデルを開発する。
そこで本研究では,様々な下流タスクにおいて,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T12:25:21Z) - BEHAVIOR: Benchmark for Everyday Household Activities in Virtual,
Interactive, and Ecological Environments [70.18430114842094]
本稿では,シミュレーションにおける100のアクティビティを持つAIのベンチマークであるBEHAVIORを紹介する。
これらの活動は現実的で多様性があり、複雑であるように設計されています。
われわれは、バーチャルリアリティー(VR)における500件の人間デモを含む。
論文 参考訳(メタデータ) (2021-08-06T23:36:23Z) - A Survey of Embodied AI: From Simulators to Research Tasks [13.923234397344487]
ネットワークAI」の時代から「身体AI」への新たなパラダイムシフト
本稿では,最先端のAIシミュレータと研究を包括的に調査する。
論文 参考訳(メタデータ) (2021-03-08T17:31:19Z) - RoboTHOR: An Open Simulation-to-Real Embodied AI Platform [56.50243383294621]
インタラクティブで具体化された視覚AIの研究を民主化するためにRoboTHORを導入する。
シミュレーションで訓練されたモデルの性能は,シミュレーションと慎重に構築された物理アナログの両方で試験される場合,大きな差があることが示される。
論文 参考訳(メタデータ) (2020-04-14T20:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。