The Coralscapes Dataset: Semantic Scene Understanding in Coral Reefs
- URL: http://arxiv.org/abs/2503.20000v1
- Date: Tue, 25 Mar 2025 18:33:59 GMT
- Title: The Coralscapes Dataset: Semantic Scene Understanding in Coral Reefs
- Authors: Jonathan Sauder, Viktor Domazetoski, Guilhem Banc-Prandi, Gabriela Perna, Anders Meibom, Devis Tuia,
- Abstract summary: We release the first general-purpose dense semantic segmentation dataset for coral reefs, covering 2075 images, 39 benthic classes, and 174k segmentation masks annotated by experts.<n>We benchmark a wide range of semantic segmentation models, and find that transfer learning from Coralscapes to existing smaller datasets consistently leads to state-of-the-art performance.<n>Coralscapes will catalyze research on efficient, scalable, and standardized coral reef surveying methods based on computer vision, and holds the potential to streamline the development of underwater ecological robotics.
- Score: 4.096374910845255
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Coral reefs are declining worldwide due to climate change and local stressors. To inform effective conservation or restoration, monitoring at the highest possible spatial and temporal resolution is necessary. Conventional coral reef surveying methods are limited in scalability due to their reliance on expert labor time, motivating the use of computer vision tools to automate the identification and abundance estimation of live corals from images. However, the design and evaluation of such tools has been impeded by the lack of large high quality datasets. We release the Coralscapes dataset, the first general-purpose dense semantic segmentation dataset for coral reefs, covering 2075 images, 39 benthic classes, and 174k segmentation masks annotated by experts. Coralscapes has a similar scope and the same structure as the widely used Cityscapes dataset for urban scene segmentation, allowing benchmarking of semantic segmentation models in a new challenging domain which requires expert knowledge to annotate. We benchmark a wide range of semantic segmentation models, and find that transfer learning from Coralscapes to existing smaller datasets consistently leads to state-of-the-art performance. Coralscapes will catalyze research on efficient, scalable, and standardized coral reef surveying methods based on computer vision, and holds the potential to streamline the development of underwater ecological robotics.
Related papers
- Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
Self-supervised learning (SSL) has enabled the development of vision foundation models for Earth Observation (EO)
In EO, this challenge is amplified by the redundancy and heavy-tailed distributions common in satellite imagery.
We propose a dynamic dataset pruning strategy designed to improve SSL pre-training by maximizing dataset diversity and balance.
arXiv Detail & Related papers (2025-04-09T15:13:26Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images.<n>This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes.
arXiv Detail & Related papers (2025-03-06T05:13:19Z) - Combining Observational Data and Language for Species Range Estimation [63.65684199946094]
We propose a novel approach combining millions of citizen science species observations with textual descriptions from Wikipedia.<n>Our framework maps locations, species, and text descriptions into a common space, enabling zero-shot range estimation from textual descriptions.<n>Our approach also acts as a strong prior when combined with observational data, resulting in more accurate range estimation with less data.
arXiv Detail & Related papers (2024-10-14T17:22:55Z) - Automatic Coral Detection with YOLO: A Deep Learning Approach for Efficient and Accurate Coral Reef Monitoring [0.0]
Coral reefs are vital ecosystems that are under increasing threat due to local human impacts and climate change.
In this paper, we present an automatic coral detection system utilizing the You Only Look Once deep learning model.
arXiv Detail & Related papers (2024-04-03T08:00:46Z) - Deep learning for multi-label classification of coral conditions in the
Indo-Pacific via underwater photogrammetry [24.00646413446011]
This study created a dataset representing common coral conditions and associated stressors in the Indo-Pacific.
It assessed existing classification algorithms and proposed a new multi-label method for automatically detecting coral conditions and extracting ecological information.
The proposed method accurately classified coral conditions as healthy, compromised, dead, and rubble.
arXiv Detail & Related papers (2024-03-09T14:42:16Z) - CoralVOS: Dataset and Benchmark for Coral Video Segmentation [12.434773034255455]
We propose a large-scale coral video segmentation dataset: textbfCoralVOS as demonstrated in Fig. 1.
We perform experiments on our CoralVOS dataset, including 6 recent state-of-the-art video object segmentation (VOS) algorithms.
The results show that there is still great potential for further promoting the segmentation accuracy.
arXiv Detail & Related papers (2023-10-03T10:45:37Z) - Pengembangan Model untuk Mendeteksi Kerusakan pada Terumbu Karang dengan
Klasifikasi Citra [3.254879465902239]
This study utilizes a specialized dataset consisting of 923 images collected from Flickr using the Flickr API.
The method employed in this research involves the use of machine learning models, particularly convolutional neural networks (CNN)
It was found that a from-scratch ResNet model can outperform pretrained models in terms of precision and accuracy.
arXiv Detail & Related papers (2023-08-08T15:30:08Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
We present DeepAqua, a self-supervised deep learning model that eliminates the need for manual annotations during the training phase.
We exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces.
Experimental results show that DeepAqua outperforms other unsupervised methods by improving accuracy by 7%, Intersection Over Union by 27%, and F1 score by 14%.
arXiv Detail & Related papers (2023-05-02T18:06:21Z) - A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented,
Temporal and Depth-aware design [77.34726150561087]
We conduct a survey on the most relevant and recent advances in Deep Semantic in the context of vision for autonomous vehicles.
Our main objective is to provide a comprehensive discussion on the main methods, advantages, limitations, results and challenges faced from each perspective.
arXiv Detail & Related papers (2023-03-08T01:29:55Z) - Reef-insight: A framework for reef habitat mapping with clustering
methods via remote sensing [0.3670422696827526]
We present Reef-Insight, an unsupervised machine learning framework that features advanced clustering methods and remote sensing for reef habitat mapping.
Our framework compares different clustering methods for reef habitat mapping using remote sensing data.
Our results indicate that Reef-Insight can generate detailed reef habitat maps outlining distinct reef habitats.
arXiv Detail & Related papers (2023-01-26T00:03:09Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
We propose SALT: Sea lice Adaptive Lattice Tracking approach for efficient estimation of sea lice dispersion and distribution.
Specifically, an adaptive spatial mesh is generated by merging nodes in the lattice graph of the Ocean Model based on local ocean properties.
The proposed SALT technique shows promise for enhancing proactive aquaculture management through predictive modelling of sea lice infestation pressure maps in a changing climate.
arXiv Detail & Related papers (2021-06-24T17:29:42Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.