Automatic Coral Detection with YOLO: A Deep Learning Approach for Efficient and Accurate Coral Reef Monitoring
- URL: http://arxiv.org/abs/2405.14879v1
- Date: Wed, 3 Apr 2024 08:00:46 GMT
- Title: Automatic Coral Detection with YOLO: A Deep Learning Approach for Efficient and Accurate Coral Reef Monitoring
- Authors: Ouassine Younes, Zahir Jihad, Conruyt Noël, Kayal Mohsen, A. Martin Philippe, Chenin Eric, Bigot Lionel, Vignes Lebbe Regine,
- Abstract summary: Coral reefs are vital ecosystems that are under increasing threat due to local human impacts and climate change.
In this paper, we present an automatic coral detection system utilizing the You Only Look Once deep learning model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coral reefs are vital ecosystems that are under increasing threat due to local human impacts and climate change. Efficient and accurate monitoring of coral reefs is crucial for their conservation and management. In this paper, we present an automatic coral detection system utilizing the You Only Look Once (YOLO) deep learning model, which is specifically tailored for underwater imagery analysis. To train and evaluate our system, we employ a dataset consisting of 400 original underwater images. We increased the number of annotated images to 580 through image manipulation using data augmentation techniques, which can improve the model's performance by providing more diverse examples for training. The dataset is carefully collected from underwater videos that capture various coral reef environments, species, and lighting conditions. Our system leverages the YOLOv5 algorithm's real-time object detection capabilities, enabling efficient and accurate coral detection. We used YOLOv5 to extract discriminating features from the annotated dataset, enabling the system to generalize, including previously unseen underwater images. The successful implementation of the automatic coral detection system with YOLOv5 on our original image dataset highlights the potential of advanced computer vision techniques for coral reef research and conservation. Further research will focus on refining the algorithm to handle challenging underwater image conditions, and expanding the dataset to incorporate a wider range of coral species and spatio-temporal variations.
Related papers
- Learning Underwater Active Perception in Simulation [51.205673783866146]
Turbidity can jeopardise the whole mission as it may prevent correct visual documentation of the inspected structures.
Previous works have introduced methods to adapt to turbidity and backscattering.
We propose a simple yet efficient approach to enable high-quality image acquisition of assets in a broad range of water conditions.
arXiv Detail & Related papers (2025-04-23T06:48:38Z) - Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
Self-supervised learning (SSL) has enabled the development of vision foundation models for Earth Observation (EO)
In EO, this challenge is amplified by the redundancy and heavy-tailed distributions common in satellite imagery.
We propose a dynamic dataset pruning strategy designed to improve SSL pre-training by maximizing dataset diversity and balance.
arXiv Detail & Related papers (2025-04-09T15:13:26Z) - The Coralscapes Dataset: Semantic Scene Understanding in Coral Reefs [4.096374910845255]
We release the first general-purpose dense semantic segmentation dataset for coral reefs, covering 2075 images, 39 benthic classes, and 174k segmentation masks annotated by experts.
We benchmark a wide range of semantic segmentation models, and find that transfer learning from Coralscapes to existing smaller datasets consistently leads to state-of-the-art performance.
Coralscapes will catalyze research on efficient, scalable, and standardized coral reef surveying methods based on computer vision, and holds the potential to streamline the development of underwater ecological robotics.
arXiv Detail & Related papers (2025-03-25T18:33:59Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images.
This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes.
arXiv Detail & Related papers (2025-03-06T05:13:19Z) - From underwater to aerial: a novel multi-scale knowledge distillation approach for coral reef monitoring [1.0644791181419937]
This study presents a novel multi-scale approach to coral reef monitoring, integrating fine-scale underwater imagery with medium-scale aerial imagery.
A transformer-based deep-learning model is trained on underwater images to detect the presence of 31 classes covering various coral morphotypes, associated fauna, and habitats.
The results show that the multi-scale methodology successfully extends fine-scale classification to larger reef areas, achieving a high degree of accuracy in predicting coral morphotypes and associated habitats.
arXiv Detail & Related papers (2025-02-25T06:12:33Z) - Enhancing Underwater Imaging with 4-D Light Fields: Dataset and Method [77.80712860663886]
4-D light fields (LFs) enhance underwater imaging plagued by light absorption, scattering, and other challenges.
We propose a progressive framework for underwater 4-D LF image enhancement and depth estimation.
We construct the first 4-D LF-based underwater image dataset for quantitative evaluation and supervised training of learning-based methods.
arXiv Detail & Related papers (2024-08-30T15:06:45Z) - Deep learning for multi-label classification of coral conditions in the
Indo-Pacific via underwater photogrammetry [24.00646413446011]
This study created a dataset representing common coral conditions and associated stressors in the Indo-Pacific.
It assessed existing classification algorithms and proposed a new multi-label method for automatically detecting coral conditions and extracting ecological information.
The proposed method accurately classified coral conditions as healthy, compromised, dead, and rubble.
arXiv Detail & Related papers (2024-03-09T14:42:16Z) - Scalable Semantic 3D Mapping of Coral Reefs with Deep Learning [4.8902950939676675]
This paper presents a new paradigm for mapping underwater environments from ego-motion video.
We show high-precision 3D semantic mapping at unprecedented scale with significantly reduced required labor costs.
Our approach significantly scales up coral reef monitoring by taking a leap towards fully automatic analysis of video transects.
arXiv Detail & Related papers (2023-09-22T11:35:10Z) - Improving Underwater Visual Tracking With a Large Scale Dataset and
Image Enhancement [70.2429155741593]
This paper presents a new dataset and general tracker enhancement method for Underwater Visual Object Tracking (UVOT)
It poses distinct challenges; the underwater environment exhibits non-uniform lighting conditions, low visibility, lack of sharpness, low contrast, camouflage, and reflections from suspended particles.
We propose a novel underwater image enhancement algorithm designed specifically to boost tracking quality.
The method has resulted in a significant performance improvement, of up to 5.0% AUC, of state-of-the-art (SOTA) visual trackers.
arXiv Detail & Related papers (2023-08-30T07:41:26Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Pengembangan Model untuk Mendeteksi Kerusakan pada Terumbu Karang dengan
Klasifikasi Citra [3.254879465902239]
This study utilizes a specialized dataset consisting of 923 images collected from Flickr using the Flickr API.
The method employed in this research involves the use of machine learning models, particularly convolutional neural networks (CNN)
It was found that a from-scratch ResNet model can outperform pretrained models in terms of precision and accuracy.
arXiv Detail & Related papers (2023-08-08T15:30:08Z) - Robot Goes Fishing: Rapid, High-Resolution Biological Hotspot Mapping in
Coral Reefs with Vision-Guided Autonomous Underwater Vehicles [6.658103076536836]
Biological hotspot detection can help coral reef managers prioritize limited resources for monitoring and intervention tasks.
Here, we explore the use of autonomous underwater vehicles (AUVs) with cameras, coupled with visual detectors and photogrammetry, to map and identify these hotspots.
To the best of our knowledge, we present one of the first attempts at using an AUV to gather visually-observed, fine-grain biological hotspot maps.
arXiv Detail & Related papers (2023-05-03T16:12:47Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
Harmful algal blooms (HABs) cause significant fish deaths in aquaculture farms.
Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope.
We employ Generative Adversarial Networks (GANs) to generate synthetic images.
arXiv Detail & Related papers (2022-08-03T20:15:55Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
We describe an approach for supervising deep networks that are based on CycleGAN.
We introduce new losses for training CycleGAN that lead to more effective training, resulting in high-quality reconstructions.
We demonstrate that the proposed method can be effectively applied to different restoration tasks like de-raining, de-hazing and de-snowing.
arXiv Detail & Related papers (2022-04-23T01:30:47Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Temperate Fish Detection and Classification: a Deep Learning based
Approach [6.282069822653608]
We propose a two-step deep learning approach for the detection and classification of temperate fishes without pre-filtering.
The first step is to detect each single fish in an image, independent of species and sex.
In the second step, we adopt a Convolutional Neural Network (CNN) with the Squeeze-and-Excitation (SE) architecture for classifying each fish in the image without pre-filtering.
arXiv Detail & Related papers (2020-05-14T12:40:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.