論文の概要: Peer Disambiguation in Self-Reported Surveys using Graph Attention Networks
- arxiv url: http://arxiv.org/abs/2503.20076v1
- Date: Tue, 25 Mar 2025 21:25:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:19:43.738275
- Title: Peer Disambiguation in Self-Reported Surveys using Graph Attention Networks
- Title(参考訳): グラフ注意ネットワークを用いた自己報告型調査におけるピア不明瞭度
- Authors: Ajitesh Srivastava, Aryan Shetty, Eric Rice,
- Abstract要約: 本研究は,グラフニューラルネットワーク(GNN)による実世界のネットワークデータ解析の進歩の可能性を示すものである。
あいまいさを解消することにより,ネットワークの精度を向上し,自殺リスク予測を改善する。
- 参考スコア(独自算出の注目度): 5.8302115161559565
- License:
- Abstract: Studying peer relationships is crucial in solving complex challenges underserved communities face and designing interventions. The effectiveness of such peer-based interventions relies on accurate network data regarding individual attributes and social influences. However, these datasets are often collected through self-reported surveys, introducing ambiguities in network construction. These ambiguities make it challenging to fully utilize the network data to understand the issues and to design the best interventions. We propose and solve two variations of link ambiguities in such network data -- (i) which among the two candidate links exists, and (ii) if a candidate link exists. We design a Graph Attention Network (GAT) that accounts for personal attributes and network relationships on real-world data with real and simulated ambiguities. We also demonstrate that by resolving these ambiguities, we improve network accuracy, and in turn, improve suicide risk prediction. We also uncover patterns using GNNExplainer to provide additional insights into vital features and relationships. This research demonstrates the potential of Graph Neural Networks (GNN) to advance real-world network data analysis facilitating more effective peer interventions across various fields.
- Abstract(参考訳): 相互関係の研究は、コミュニティが直面している複雑な課題を解決し、介入を設計する上で重要である。
このようなピアベースの介入の有効性は、個々の属性や社会的影響に関する正確なネットワークデータに依存する。
しかしながら、これらのデータセットは、しばしば自己報告による調査を通じて収集され、ネットワーク構築における曖昧さが導入される。
これらの曖昧さは、ネットワークデータを十分に活用して問題を理解し、最良の介入を設計することを困難にしている。
このようなネットワークデータにおけるリンクあいまいさの2つのバリエーションを提案し,解決する。
i) 2つの候補リンクのうちの1つが存在し、
(ii) 候補リンクが存在する場合。
実世界とシミュレーションされたあいまいさを持つ実世界のデータに対して,個人属性とネットワーク関係を考慮に入れたグラフ注意ネットワーク(GAT)を設計する。
また,これらの曖昧さを解消することで,ネットワークの精度を向上し,自殺リスク予測を改善することも実証した。
また、GNNExplainerを使って、重要な機能や関係性に関する洞察を提供するパターンも見つけました。
本研究は、グラフニューラルネットワーク(GNN)が、様々な分野におけるより効果的なピア介入を促進するために、現実世界のネットワークデータ分析を前進させる可能性を実証する。
関連論文リスト
- Causal GNNs: A GNN-Driven Instrumental Variable Approach for Causal Inference in Networks [0.0]
CgNNは、隠れた共同設立者のバイアスを緩和し、因果効果の推定を改善するための新しいアプローチである。
以上の結果から,CgNNは隠れた共同創設者バイアスを効果的に軽減し,複雑なネットワークデータにおける因果推論のための堅牢なGNN駆動IVフレームワークを提供することが示された。
論文 参考訳(メタデータ) (2024-09-13T05:39:00Z) - Uncertainty in Graph Neural Networks: A Survey [47.785948021510535]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Over-Squashing in Graph Neural Networks: A Comprehensive survey [0.0]
この調査は、グラフニューラルネットワーク(GNN)におけるオーバースカッシングの課題を掘り下げるものだ。
オーバースカッシングの原因、結果、緩和戦略を包括的に探求する。
グラフの書き換え、新しい正規化、スペクトル分析、曲率に基づく戦略など、様々な手法がレビューされている。
また、オーバー・スムーシングなど、オーバー・スカッシングと他のGNN制限との相互作用についても論じている。
論文 参考訳(メタデータ) (2023-08-29T18:46:15Z) - BS-GAT Behavior Similarity Based Graph Attention Network for Network
Intrusion Detection [20.287285893803244]
本稿では,グラフアテンションネットワークを用いた行動類似性(BS-GAT)に基づくグラフニューラルネットワークアルゴリズムを提案する。
その結果,提案手法は有効であり,既存のソリューションと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2023-04-07T09:42:07Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - Adversarial Robustness of Probabilistic Network Embedding for Link
Prediction [24.335469995826244]
リンク予測のための条件付きネットワーク埋め込み(CNE)の対角的ロバスト性について検討する。
ネットワークの小さな対向摂動に対するモデルのリンク予測の感度を測定した。
我々のアプローチでは、そのような摂動に最も弱いネットワーク内のリンクとリンクを識別できる。
論文 参考訳(メタデータ) (2021-07-05T11:07:35Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Joint Inference of Diffusion and Structure in Partially Observed Social
Networks Using Coupled Matrix Factorization [3.399624105745357]
本稿では、部分的に観測されたデータからモデルを学び、観測されていない拡散と構造ネットワークを推定する。
提案手法では,ノードとカスケードプロセスの相互関係を,学習因子と低次元潜在因子を用いて利用した。
これらの合成および実世界のデータセットの実験により、提案手法は見えない社会行動を検出し、リンクを予測し、潜伏した特徴を識別することに成功した。
論文 参考訳(メタデータ) (2020-10-03T17:48:57Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
数発のアウトオブグラフリンク予測という現実的な問題を導入する。
我々は,新しいメタ学習フレームワークによってこの問題に対処する。
我々は,知識グラフの補完と薬物と薬物の相互作用予測のために,複数のベンチマークデータセット上でモデルを検証した。
論文 参考訳(メタデータ) (2020-06-11T17:42:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。