Relativity of Quantum Correlations: Invariant Quantities and Frame-Dependent Measures
- URL: http://arxiv.org/abs/2503.20090v2
- Date: Sat, 19 Apr 2025 22:32:19 GMT
- Title: Relativity of Quantum Correlations: Invariant Quantities and Frame-Dependent Measures
- Authors: Michael Suleymanov, Avishy Carmi, Eliahu Cohen,
- Abstract summary: We investigate the perspective-dependence of position and momentum uncertainties, correlations, covariance matrices, and entanglement within the quantum reference frames formalism.<n>We show that the Robertson-Schr"odinger uncertainty relations are frame-dependent, and so are correlations and variances, which satisfy various constraints described as inequalities.<n>These invariants suggest fundamental, robust measures of uncertainty and entanglement that persist despite changes in observational perspective.
- Score: 0.3277163122167433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Viewing frames of reference as physical systems, subject to the same laws as the systems they describe, is central to the relational approach in physics. Under the assumption that quantum mechanics universally governs all physical entities, this perspective naturally leads to the concept of quantum reference frames (QRFs). We investigate the perspective-dependence of position and momentum uncertainties, correlations, covariance matrices, and entanglement within the QRF formalism. We show that the Robertson-Schr\"odinger uncertainty relations are frame-dependent, and so are correlations and variances, which satisfy various constraints described as inequalities. However, the determinant of the total covariance matrix, linked to the uncertainty volume in phase space, as well as variance-based entanglement criteria, remains invariant under changes of reference frame. Under specific conditions, the purities of subsystems are also invariant for different QRFs, but in general, they are perspective-dependent. These invariants suggest fundamental, robust measures of uncertainty and entanglement that persist despite changes in observational perspective, potentially inspiring dedicated quantum information protocols as well as further foundational studies.
Related papers
- Precision bounds for multiple currents in open quantum systems [37.69303106863453]
We derivation quantum TURs and KURs for multiple observables in open quantum systems undergoing Markovian dynamics.
Our bounds are tighter than previously derived quantum TURs and KURs for single observables.
We also find an intriguing quantum signature of correlations captured by the off-diagonal element of the Fisher information matrix.
arXiv Detail & Related papers (2024-11-13T23:38:24Z) - A New Framework for Quantum Phases in Open Systems: Steady State of Imaginary-Time Lindbladian Evolution [18.47824812164327]
We introduce the concept of imaginary-time Lindbladian evolution as an alternative framework.
This new approach defines gapped quantum phases in open systems through the spectrum properties of the imaginary-Liouville superoperator.
arXiv Detail & Related papers (2024-08-06T14:53:40Z) - Entropic uncertainty relations in Schwarzschild space-time [10.560954016047198]
We propose a generalized entropic uncertainty relation for arbitrary multiple-observable in multipartite system.
We discuss the proposed uncertainty relations and quantum coherence in the context of Schwarzschild space-time.
arXiv Detail & Related papers (2024-07-18T02:26:21Z) - Equivalence Relations in Quantum Theory: An Objective Account of Bases and Factorizations [0.0]
In orthodox Standard Quantum Mechanics (SQM) bases and factorizations are considered to define quantum states and entanglement in relativistic terms.
We provide an invariant account of bases and factorizations which allows us to build a conceptual-operational bridge between formalism and quantum phenomena.
arXiv Detail & Related papers (2024-04-23T10:17:49Z) - Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Relational Quantum Mechanics, Quantum Relativism, and the Iteration of Relativity [0.0]
The idea that the dynamical properties of quantum systems are invariably relative to other systems has recently regained currency.
Are there absolute facts about the properties one system possesses relative to a specified reference, or is this again a relative matter, and so on?
I conclude with some reflections on the current state of play in perspectivist versions of RQM and quantum relativism more generally.
arXiv Detail & Related papers (2024-03-06T21:48:41Z) - Entanglement monogamy via multivariate trace inequalities [12.814476856584346]
We derive variational formulas for relative entropies based on restricted measurements of multipartite quantum systems.
We give direct, matrix-analysis-based proofs for the faithfulness of squashed entanglement.
arXiv Detail & Related papers (2023-04-28T14:36:54Z) - Quantum Mechanics as a Theory of Incompatible Symmetries [77.34726150561087]
We show how classical probability theory can be extended to include any system with incompatible variables.
We show that any probabilistic system (classical or quantal) that possesses incompatible variables will show not only uncertainty, but also interference in its probability patterns.
arXiv Detail & Related papers (2022-05-31T16:04:59Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - A note on uncertainty relations of metric-adjusted skew information [10.196893054623969]
Uncertainty principle is one of the fundamental features of quantum mechanics.
We study uncertainty relations based on metric-adjusted skew information for finite quantum observables.
arXiv Detail & Related papers (2022-03-02T13:57:43Z) - Perspective-neutral approach to quantum frame covariance for general
symmetry groups [0.0]
Internal quantum reference frames (QRFs) appear widely in the literature on quantum gravity, gauge theories and quantum foundations.
This is a framework that links internal QRF perspectives via a manifestly gauge-invariant Hilbert space in the form of "quantum coordinate transformations"
We reveal new effects: (i) QRFs with non-trivial orientation isotropy groups can only resolve isotropy-group-invariant properties of other subsystems; (ii) in the absence of symmetries, the internal perspective Hilbert space "rotates" through the kinematical subsystem Hilbert space as the QR
arXiv Detail & Related papers (2021-10-26T16:19:24Z) - Assessing Relational Quantum Mechanics [0.0]
Quantum Mechanics (RQM) is an interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems.
We find that RQM fails to address the conceptual problems of standard quantum mechanics--related to the lack of clarity in its behavior.
We conclude that RQM is unsuccessful in its attempt to provide a satisfactory understanding of the quantum world.
arXiv Detail & Related papers (2021-05-27T17:47:28Z) - Quantum Relativity of Subsystems [58.720142291102135]
We show that different reference frame perspectives induce different sets of subsystem observable algebras, which leads to a gauge-invariant, frame-dependent notion of subsystems and entanglement.
Such a QRF perspective does not inherit the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical Hilbert space and observable algebra.
Since the condition for this to occur is contingent on the choice of QRF, the notion of subsystem locality is frame-dependent.
arXiv Detail & Related papers (2021-03-01T19:00:01Z) - An uncertainty view on complementarity and a complementarity view on
uncertainty [0.0]
We obtain a complete complementarity relation for quantum uncertainty, classical uncertainty, and predictability.
We show that Brukner-Zeilinger's invariant information quantifies both the wave and particle characters of a quanton.
arXiv Detail & Related papers (2020-07-09T20:40:25Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.