論文の概要: Unlocking the Value of Decentralized Data: A Federated Dual Learning Approach for Model Aggregation
- arxiv url: http://arxiv.org/abs/2503.20138v1
- Date: Wed, 26 Mar 2025 01:00:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:21:48.658396
- Title: Unlocking the Value of Decentralized Data: A Federated Dual Learning Approach for Model Aggregation
- Title(参考訳): 分散データの価値を解き放つ:モデル集約のための2元学習アプローチ
- Authors: Junyi Zhu, Ruicong Yao, Taha Ceritli, Savas Ozkan, Matthew B. Blaschko, Eunchung Noh, Jeongwon Min, Cho Jung Min, Mete Ozay,
- Abstract要約: フェデレートラーニング(FL)は、AIモデルを分散データでトレーニング可能にすることで、有望な代替手段を提供する。
既存のFLアプローチは、異種データ分散や通信遅延といった課題により、集中トレーニングのパフォーマンスに匹敵する。
クライアントからのモデル更新のマージをガイドするために,サーバにおける集中型データを活用するデュアルラーニング手法を提案する。
- 参考スコア(独自算出の注目度): 20.023295646723312
- License:
- Abstract: Artificial Intelligence (AI) technologies have revolutionized numerous fields, yet their applications often rely on costly and time-consuming data collection processes. Federated Learning (FL) offers a promising alternative by enabling AI models to be trained on decentralized data where data is scattered across clients (distributed nodes). However, existing FL approaches struggle to match the performance of centralized training due to challenges such as heterogeneous data distribution and communication delays, limiting their potential for breakthroughs. We observe that many real-world use cases involve hybrid data regimes, in which a server (center node) has access to some data while a large amount of data is distributed across associated clients. To improve the utilization of decentralized data under this regime, address data heterogeneity issue, and facilitate asynchronous communication between the server and clients, we propose a dual learning approach that leverages centralized data at the server to guide the merging of model updates from clients. Our method accommodates scenarios where server data is out-of-domain relative to decentralized client data, making it applicable to a wide range of use cases. We provide theoretical analysis demonstrating the faster convergence of our method compared to existing methods. Furthermore, experimental results across various scenarios show that our approach significantly outperforms existing technologies, highlighting its potential to unlock the value of large amounts of decentralized data.
- Abstract(参考訳): 人工知能(AI)技術は多くの分野に革命をもたらしたが、そのアプリケーションは高価で時間を要するデータ収集プロセスに依存していることが多い。
Federated Learning(FL)は、クライアント(分散ノード)に分散した分散データでAIモデルをトレーニング可能にすることで、有望な代替手段を提供する。
しかし、既存のFLアプローチは、異種データ分散や通信遅延といった課題により、集中トレーニングのパフォーマンスに適合し、ブレークスルーの可能性を制限している。
多くの実世界のユースケースでは、サーバ(中央ノード)が何らかのデータにアクセスでき、大量のデータが関連するクライアント間で分散されるハイブリッドデータレシエーションが関係している。
この体制下での分散化データの活用,データの不均一性問題への対処,サーバとクライアント間の非同期通信を容易にするために,クライアントからのモデル更新のマージを導くために,サーバにおける集中型データを活用するデュアルラーニングアプローチを提案する。
本手法は,サーバデータが分散クライアントデータに対してドメイン外であるシナリオに対応し,幅広いユースケースに適用可能である。
提案手法は従来の手法に比べて高速な収束を示す理論解析である。
さらに,様々なシナリオを対象とした実験結果から,我々のアプローチは既存の技術よりもはるかに優れており,大量の分散データの価値を解き放つ可能性も浮き彫りにしている。
関連論文リスト
- Federated Clustering: An Unsupervised Cluster-Wise Training for Decentralized Data Distributions [1.6385815610837167]
Federated Cluster-Wise Refinement(FedCRef)には、同様のデータ分散を備えたクラスタ上でモデルを協調的にトレーニングするクライアントが含まれている。
これらのグループでは、クライアントは、各データ分布を表す共有モデルを共同でトレーニングし、データの関連性を高めるために、ローカルクラスタを継続的に精錬する。
この反復的処理により,ネットワーク全体にわたる潜在的なデータ分布を同定し,それぞれにロバストな表現モデルを構築することができる。
論文 参考訳(メタデータ) (2024-08-20T09:05:44Z) - Outsourcing Training without Uploading Data via Efficient Collaborative
Open-Source Sampling [49.87637449243698]
従来のアウトソーシングでは、デバイスデータをクラウドサーバにアップロードする必要がある。
我々は、公開および異種ソースから収集された膨大なデータセットである、広く利用可能なオープンソースデータを活用することを提案する。
我々は,オープンソースデータからクラウドトレーニングのためのプロキシデータセットを構築するための,ECOS(Efficient Collaborative Open-source Sampling)と呼ばれる新しい戦略を開発した。
論文 参考訳(メタデータ) (2022-10-23T00:12:18Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
機械学習(ML)は、巨大なIoT(Internet of Things)ベースのインテリジェントでユビキタスなコンピューティングのビッグデータ駆動モデリングと分析のための重要なテクニックである。
急成長するアプリケーションやデータ量にとって、分散学習は有望な新興パラダイムである。
本稿では,多くのユーザデバイスに分散した分散システム上でMLモデルをトレーニングする問題について検討する。
論文 参考訳(メタデータ) (2022-02-07T15:04:15Z) - Data augmentation through multivariate scenario forecasting in Data
Centers using Generative Adversarial Networks [0.18416014644193063]
人工知能に基づくグローバルなエネルギー効率戦略を実現する上での大きな課題は、アルゴリズムを供給するために大量のデータが必要であることです。
本稿では,データセンタ内の合成シナリオ予測に基づく時系列データ拡張手法を提案する。
我々の研究は、データセンターで消費されるエネルギーを最適化するのに役立ちます。
論文 参考訳(メタデータ) (2022-01-12T15:09:10Z) - Federated Multi-Target Domain Adaptation [99.93375364579484]
フェデレートされた学習手法により、プライバシを保護しながら、分散ユーザデータ上で機械学習モデルをトレーニングすることが可能になります。
分散クライアントデータがラベル付けされず、集中型ラベル付きデータセットがサーバ上で利用可能となる、より実用的なシナリオを考えます。
本稿では,新しい課題に対処する効果的なDualAdapt法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:53:05Z) - Decentralized federated learning of deep neural networks on non-iid data [0.6335848702857039]
分散環境でパーソナライズされたディープラーニングモデルを学ぶことの難しさに対処する。
本稿では,PENS(Performance-Based Neighbor Selection)という手法を提案する。
PENSは強力なベースラインに比べて高い精度を達成することができる。
論文 参考訳(メタデータ) (2021-07-18T19:05:44Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - Decentralized Federated Learning via Mutual Knowledge Transfer [37.5341683644709]
分散型連合学習(DFL)は、モノのインターネット(IoT)システムにおける問題です。
現地のクライアントが学習した知識を相互に転送することでモデルを融合させる相互知識伝達(Def-KT)アルゴリズムを提案します。
MNIST, Fashion-MNIST, CIFAR10データセットに対する実験により,提案アルゴリズムがベースラインDFL法を著しく上回るデータセットを明らかにした。
論文 参考訳(メタデータ) (2020-12-24T01:43:53Z) - Multi-Center Federated Learning [62.57229809407692]
本稿では,フェデレート学習のための新しい多中心集約機構を提案する。
非IIDユーザデータから複数のグローバルモデルを学び、同時にユーザとセンタ間の最適なマッチングを導出する。
ベンチマークデータセットによる実験結果から,本手法はいくつかの一般的なフェデレーション学習法より優れていることが示された。
論文 参考訳(メタデータ) (2020-05-03T09:14:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。