BeLightRec: A lightweight recommender system enhanced with BERT
- URL: http://arxiv.org/abs/2503.20206v1
- Date: Wed, 26 Mar 2025 04:03:20 GMT
- Title: BeLightRec: A lightweight recommender system enhanced with BERT
- Authors: Manh Mai Van, Tin T. Tran,
- Abstract summary: This research proposes combining two sources of item similarity signals: one from collaborative filtering and one from the semantic similarity measure between item names and descriptions.<n>The signals are integrated into a graph convolutional neural network to optimize model weights, thereby providing accurate recommendations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The trend of data mining using deep learning models on graph neural networks has proven effective in identifying object features through signal encoders and decoders, particularly in recommendation systems utilizing collaborative filtering methods. Collaborative filtering exploits similarities between users and items from historical data. However, it overlooks distinctive information, such as item names and descriptions. The semantic data of items should be further mined using models in the natural language processing field. Thus, items can be compared using text classification, similarity assessments, or identifying analogous sentence pairs. This research proposes combining two sources of item similarity signals: one from collaborative filtering and one from the semantic similarity measure between item names and descriptions. These signals are integrated into a graph convolutional neural network to optimize model weights, thereby providing accurate recommendations. Experiments are also designed to evaluate the contribution of each signal group to the recommendation results.
Related papers
- Improvement Graph Convolution Collaborative Filtering with Weighted addition input [0.0]
We build a model WiGCN (Weighted input GCN) to describe and experiment on well-known datasets.
Conclusions will be stated after comparing our results with state-of-the-art such as GCMC, NGCF and LightGCN.
arXiv Detail & Related papers (2025-03-27T12:57:33Z) - Topology-aware Debiased Self-supervised Graph Learning for
Recommendation [6.893289671937124]
We propose Topology-aware De Self-supervised Graph Learning ( TDSGL) for recommendation.
TDSGL constructs contrastive pairs according to the semantic similarity between users (items)
Our results show that the proposed model outperforms the state-of-the-art models significantly on three public datasets.
arXiv Detail & Related papers (2023-10-24T14:16:19Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
Simplicial complexes prove effective in modeling data with multiway dependencies.
We develop a contrastive self-supervised learning approach for processing simplicial data.
arXiv Detail & Related papers (2023-09-14T00:40:07Z) - Opinion mining using Double Channel CNN for Recommender System [0.0]
We present an approach for sentiment analysis with a deep learning model and use it to recommend products.
A two-channel convolutional neural network model has been used for opinion mining, which has five layers and extracts essential features from the data.
Our proposed method has reached 91.6% accuracy, significantly improved compared to previous aspect-based approaches.
arXiv Detail & Related papers (2023-07-15T13:11:18Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - Learning Personalized Item-to-Item Recommendation Metric via Implicit
Feedback [24.37151414523712]
This paper studies the item-to-item recommendation problem in recommender systems from a new perspective of metric learning via implicit feedback.
We develop and investigate a personalizable deep metric model that captures both the internal contents of items and how they were interacted with by users.
arXiv Detail & Related papers (2022-03-18T18:08:57Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
We propose methods to facilitate identification of training data artifacts.
We show that this proposed training-feature attribution approach can be used to uncover artifacts in training data.
We execute a small user study to evaluate whether these methods are useful to NLP researchers in practice.
arXiv Detail & Related papers (2021-07-01T09:26:13Z) - Towards an efficient framework for Data Extraction from Chart Images [27.114170963444074]
We adopt state-of-the-art computer vision techniques for the data extraction stage in a data mining system.
For building a robust point detector, a fully convolutional network with feature fusion module is adopted.
For data conversion, we translate the detected element into data with semantic value.
arXiv Detail & Related papers (2021-05-05T13:18:53Z) - Modurec: Recommender Systems with Feature and Time Modulation [50.51144496609274]
We propose Modurec: an autoencoder-based method that combines all available information using the feature-wise modulation mechanism.
We show on Movielens datasets that these modifications produce state-of-the-art results in most evaluated settings.
arXiv Detail & Related papers (2020-10-13T09:18:33Z) - Joint Item Recommendation and Attribute Inference: An Adaptive Graph
Convolutional Network Approach [61.2786065744784]
In recommender systems, users and items are associated with attributes, and users show preferences to items.
As annotating user (item) attributes is a labor intensive task, the attribute values are often incomplete with many missing attribute values.
We propose an Adaptive Graph Convolutional Network (AGCN) approach for joint item recommendation and attribute inference.
arXiv Detail & Related papers (2020-05-25T10:50:01Z) - A Hybrid Approach to Enhance Pure Collaborative Filtering based on
Content Feature Relationship [0.17188280334580192]
We introduce a novel method to extract the implicit relationship between content features using a sort of well-known methods from the natural language processing domain, namely Word2Vec.
Next, we propose a novel content-based recommendation system that employs the relationship to determine vector representations for items.
Our evaluation results demonstrate that it can predict the preference a user would have for a set of items as good as pure collaborative filtering.
arXiv Detail & Related papers (2020-05-17T02:20:45Z) - Active Learning for Coreference Resolution using Discrete Annotation [76.36423696634584]
We improve upon pairwise annotation for active learning in coreference resolution.
We ask annotators to identify mention antecedents if a presented mention pair is deemed not coreferent.
In experiments with existing benchmark coreference datasets, we show that the signal from this additional question leads to significant performance gains per human-annotation hour.
arXiv Detail & Related papers (2020-04-28T17:17:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.