Opinion mining using Double Channel CNN for Recommender System
- URL: http://arxiv.org/abs/2307.07798v1
- Date: Sat, 15 Jul 2023 13:11:18 GMT
- Title: Opinion mining using Double Channel CNN for Recommender System
- Authors: Minoo Sayyadpour, Ali Nazarizadeh
- Abstract summary: We present an approach for sentiment analysis with a deep learning model and use it to recommend products.
A two-channel convolutional neural network model has been used for opinion mining, which has five layers and extracts essential features from the data.
Our proposed method has reached 91.6% accuracy, significantly improved compared to previous aspect-based approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Much unstructured data has been produced with the growth of the Internet and
social media. A significant volume of textual data includes users' opinions
about products in online stores and social media. By exploring and categorizing
them, helpful information can be acquired, including customer satisfaction,
user feedback about a particular event, predicting the sale of a specific
product, and other similar cases. In this paper, we present an approach for
sentiment analysis with a deep learning model and use it to recommend products.
A two-channel convolutional neural network model has been used for opinion
mining, which has five layers and extracts essential features from the data. We
increased the number of comments by applying the SMOTE algorithm to the initial
dataset and balanced the data. Then we proceed to cluster the aspects. We also
assign a weight to each cluster using tensor decomposition algorithms that
improve the recommender system's performance. Our proposed method has reached
91.6% accuracy, significantly improved compared to previous aspect-based
approaches.
Related papers
- Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Leveraging Angular Information Between Feature and Classifier for
Long-tailed Learning: A Prediction Reformulation Approach [90.77858044524544]
We reformulate the recognition probabilities through included angles without re-balancing the classifier weights.
Inspired by the performance improvement of the predictive form reformulation, we explore the different properties of this angular prediction.
Our method is able to obtain the best performance among peer methods without pretraining on CIFAR10/100-LT and ImageNet-LT.
arXiv Detail & Related papers (2022-12-03T07:52:48Z) - A Recommendation Approach based on Similarity-Popularity Models of
Complex Networks [1.385805101975528]
This work proposes a novel recommendation method based on complex networks generated by a similarity-popularity model to predict ones.
We first construct a model of a network having users and items as nodes from observed ratings and then use it to predict unseen ratings.
The proposed approach is implemented and experimentally compared against baseline and state-of-the-art recommendation methods on 21 datasets from various domains.
arXiv Detail & Related papers (2022-09-29T11:00:06Z) - Infinite Recommendation Networks: A Data-Centric Approach [8.044430277912936]
We leverage the Neural Tangent Kernel to train infinitely-wide neural networks to devise $infty$-AE: an autoencoder with infinitely-wide bottleneck layers.
We also develop Distill-CF for synthesizing tiny, high-fidelity data summaries.
We observe 96-105% of $infty$-AE's performance on the full dataset with as little as 0.1% of the original dataset size.
arXiv Detail & Related papers (2022-06-03T00:34:13Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
We propose original ideas that help us to leverage such datasets in the context of change detection.
First, we propose the guided anisotropic diffusion (GAD) algorithm, which improves semantic segmentation results.
We then show its potential in two weakly-supervised learning strategies tailored for change detection.
arXiv Detail & Related papers (2021-12-31T10:03:47Z) - Utilizing Textual Reviews in Latent Factor Models for Recommender
Systems [1.7361353199214251]
We propose a recommender algorithm that combines a rating modelling technique with a topic modelling method based on textual reviews.
We evaluate the performance of the algorithm using Amazon.com datasets with different sizes, corresponding to 23 product categories.
arXiv Detail & Related papers (2021-11-16T15:07:51Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
Research in recommendation has shifted to inventing new recommender models based on neural networks.
In recent years, we have witnessed significant progress in developing neural recommender models.
arXiv Detail & Related papers (2021-04-27T08:03:52Z) - Comprehensive Empirical Evaluation of Deep Learning Approaches for
Session-based Recommendation in E-Commerce [38.42250061908039]
In session-based recommendation, a recommendation system counts on the sequence of events made by a user within the same session to predict and endorse other items.
We present a comprehensive evaluation of the state-of-the-art deep learning approaches used in the session-based recommendation.
arXiv Detail & Related papers (2020-10-17T17:22:35Z) - Self-supervised Learning for Large-scale Item Recommendations [18.19202958502061]
Large scale recommender models find most relevant items from huge catalogs.
With millions to billions of items in the corpus, users tend to provide feedback for a very small set of them.
We propose a multi-task self-supervised learning framework for large-scale item recommendations.
arXiv Detail & Related papers (2020-07-25T06:21:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.