論文の概要: Video Motion Graphs
- arxiv url: http://arxiv.org/abs/2503.20218v1
- Date: Wed, 26 Mar 2025 04:20:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:20:37.471908
- Title: Video Motion Graphs
- Title(参考訳): 動画モーショングラフ
- Authors: Haiyang Liu, Zhan Xu, Fa-Ting Hong, Hsin-Ping Huang, Yi Zhou, Yang Zhou,
- Abstract要約: 我々は、リアルな人間のモーションビデオを生成するように設計されたMotion Graphsを紹介する。
システムは、まず、条件に合ったジェスチャーでビデオクリップを検索し、次にフレームを生成して、クリップ境界をシームレスに接続することによって、新しいビデオを生成する。
- 参考スコア(独自算出の注目度): 17.57582826585202
- License:
- Abstract: We present Video Motion Graphs, a system designed to generate realistic human motion videos. Using a reference video and conditional signals such as music or motion tags, the system synthesizes new videos by first retrieving video clips with gestures matching the conditions and then generating interpolation frames to seamlessly connect clip boundaries. The core of our approach is HMInterp, a robust Video Frame Interpolation (VFI) model that enables seamless interpolation of discontinuous frames, even for complex motion scenarios like dancing. HMInterp i) employs a dual-branch interpolation approach, combining a Motion Diffusion Model for human skeleton motion interpolation with a diffusion-based video frame interpolation model for final frame generation. ii) adopts condition progressive training to effectively leverage identity strong and weak conditions, such as images and pose. These designs ensure both high video texture quality and accurate motion trajectory. Results show that our Video Motion Graphs outperforms existing generative- and retrieval-based methods for multi-modal conditioned human motion video generation. Project page can be found at https://h-liu1997.github.io/Video-Motion-Graphs/
- Abstract(参考訳): 本稿では、リアルな人間のモーションビデオを生成するためのシステム、Video Motion Graphsを紹介する。
このシステムは、音楽やモーションタグなどの基準映像や条件信号を用いて、まずビデオクリップを検索し、条件に合ったジェスチャーで合成し、次に補間フレームを生成して、クリップ境界をシームレスに接続する。
我々のアプローチの中核は、ダンスのような複雑な動きシナリオであっても、不連続なフレームのシームレスな補間を可能にする堅牢なビデオフレーム補間(VFI)モデルであるHMInterpである。
HMInterp
一 人間の骨格運動補間のための運動拡散モデルと、最終フレーム生成のための拡散ベースビデオフレーム補間モデルを組み合わせた二重ブランチ補間手法を用いる。
二 画像、ポーズ等のアイデンティティの強い、弱い状態を効果的に活用するために、条件進行訓練を採用すること。
これらの設計は、高い映像テクスチャ品質と正確な運動軌跡の両方を保証する。
その結果、ビデオモーショングラフは、既存の生成および検索に基づくマルチモーダルな人間のモーションビデオ生成法よりも優れていた。
プロジェクトページはhttps://h-liu 1997.github.io/Video-Motion-Graphs/にある。
関連論文リスト
- VideoJAM: Joint Appearance-Motion Representations for Enhanced Motion Generation in Video Models [71.9811050853964]
VideoJAMは、ビデオジェネレータの前に効果的な動きを注入する新しいフレームワークである。
VideoJAMは動きコヒーレンスにおける最先端のパフォーマンスを達成する。
これらの知見は、外観と動きが相補的であり、効果的に統合されると、映像生成の視覚的品質とコヒーレンスの両方を高めることを強調した。
論文 参考訳(メタデータ) (2025-02-04T17:07:10Z) - Motion Prompting: Controlling Video Generation with Motion Trajectories [57.049252242807874]
スパースもしくは高密度なビデオ軌跡を条件とした映像生成モデルを訓練する。
ハイレベルなユーザリクエストを,詳細なセミセンスな動作プロンプトに変換する。
我々は、カメラや物体の動き制御、画像との「相互作用」、動画転送、画像編集など、様々な応用を通してアプローチを実証する。
論文 参考訳(メタデータ) (2024-12-03T18:59:56Z) - MoTrans: Customized Motion Transfer with Text-driven Video Diffusion Models [59.10171699717122]
MoTransは、新しいコンテキストにおける類似した動きのビデオ生成を可能にする、カスタマイズされたモーション転送方式である。
再カプセル化されたプロンプトとビデオフレームからのマルチモーダル表現は、外観のモデリングを促進する。
本手法は, 特定の動きパターンを, 単一の参照ビデオや複数参照ビデオから効果的に学習する。
論文 参考訳(メタデータ) (2024-12-02T10:07:59Z) - TANGO: Co-Speech Gesture Video Reenactment with Hierarchical Audio Motion Embedding and Diffusion Interpolation [4.019144083959918]
TANGO(Tango)は、音声による体温映像を生成するためのフレームワークである。
TANGOは、わずか数分間のシングルスピーカー参照ビデオから、ボディジェスチャーを同期させた高忠実度ビデオを生成する。
論文 参考訳(メタデータ) (2024-10-05T16:30:46Z) - VMC: Video Motion Customization using Temporal Attention Adaption for
Text-to-Video Diffusion Models [58.93124686141781]
Video Motion Customization (VMC) はビデオ拡散モデルに時間的注意層を適応させる新しいワンショットチューニング手法である。
本研究では, 連続するフレーム間の残留ベクトルを運動基準として用いた新しい運動蒸留法を提案する。
実世界のさまざまな動きや状況にまたがる最先端のビデオ生成モデルに対して,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-12-01T06:50:11Z) - MoVideo: Motion-Aware Video Generation with Diffusion Models [97.03352319694795]
本稿では,映像深度と光フローの2つの側面から動きを考慮に入れたモーションアウェア・ジェネレーション(MoVideo)フレームワークを提案する。
MoVideoは、テキスト・トゥ・ビデオと画像・トゥ・ビデオ生成の両方で最先端の結果を達成し、期待できる即時一貫性、フレームの整合性、視覚的品質を示す。
論文 参考訳(メタデータ) (2023-11-19T13:36:03Z) - Non-linear Motion Estimation for Video Frame Interpolation using
Space-time Convolutions [18.47978862083129]
ビデオフレームは、ビデオ内の2つの連続するフレーム間で1つまたは複数のフレームを合成することを目的としている。
いくつかの古い研究は、ビデオフレーム間のピクセルごとの線形運動を仮定することでこの問題に対処した。
本稿では,使用すべき動作モデルを適応的に選択可能な時空間畳み込みネットワークを用いて,画素あたりの動きを近似することを提案する。
論文 参考訳(メタデータ) (2022-01-27T09:49:23Z) - Render In-between: Motion Guided Video Synthesis for Action
Interpolation [53.43607872972194]
本研究では、リアルな人間の動きと外観を生成できる動き誘導型フレームアップサンプリングフレームワークを提案する。
大規模モーションキャプチャーデータセットを活用することにより、フレーム間の非線形骨格運動を推定するために、新しいモーションモデルが訓練される。
私たちのパイプラインでは、低フレームレートのビデオと不自由な人間のモーションデータしか必要としませんが、トレーニングには高フレームレートのビデオは必要ありません。
論文 参考訳(メタデータ) (2021-11-01T15:32:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。