Solving 2-D Helmholtz equation in the rectangular, circular, and elliptical domains using neural networks
- URL: http://arxiv.org/abs/2503.20222v1
- Date: Wed, 26 Mar 2025 04:28:49 GMT
- Title: Solving 2-D Helmholtz equation in the rectangular, circular, and elliptical domains using neural networks
- Authors: D. Veerababu, Prasanta K. Ghosh,
- Abstract summary: Physics-informed neural networks offered an alternate way to solve several differential equations that govern complicated physics.<n>Their success in predicting the acoustic field is limited by the vanishing-gradient problem that occurs when solving the Helmholtz equation.<n>The problem of solving the two-dimensional Helmholtz equation with the prescribed boundary conditions is posed as an unconstrained optimization problem using trial solution method.<n>A trial neural network that satisfies the given boundary conditions prior to the training process is constructed using the technique of transfiniteconstrained and the theory of R-functions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed neural networks offered an alternate way to solve several differential equations that govern complicated physics. However, their success in predicting the acoustic field is limited by the vanishing-gradient problem that occurs when solving the Helmholtz equation. In this paper, a formulation is presented that addresses this difficulty. The problem of solving the two-dimensional Helmholtz equation with the prescribed boundary conditions is posed as an unconstrained optimization problem using trial solution method. According to this method, a trial neural network that satisfies the given boundary conditions prior to the training process is constructed using the technique of transfinite interpolation and the theory of R-functions. This ansatz is initially applied to the rectangular domain and later extended to the circular and elliptical domains. The acoustic field predicted from the proposed formulation is compared with that obtained from the two-dimensional finite element methods. Good agreement is observed in all three domains considered. Minor limitations associated with the proposed formulation and their remedies are also discussed.
Related papers
- Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks [0.0]
PINNs are used to study vortex solutions in 2+1 dimensional nonlinear partial differential equations.<n>We consider PINNs with conservation laws (referred to as cPINNs), deformations of the initial profiles, and a friction approach to improve the identification's resolution.
arXiv Detail & Related papers (2024-10-23T08:29:13Z) - Transformed Physics-Informed Neural Networks for The Convection-Diffusion Equation [0.0]
Singularly perturbed problems have solutions with steep boundary layers that are hard to resolve numerically.
Traditional numerical methods, such as Finite Difference Methods, require a refined mesh to obtain stable and accurate solutions.
We consider the use of Physics-Informed Neural Networks (PINNs) to produce numerical solutions of singularly perturbed problems.
arXiv Detail & Related papers (2024-09-12T00:24:21Z) - Augmented neural forms with parametric boundary-matching operators for solving ordinary differential equations [0.0]
This paper introduces a formalism for systematically crafting proper neural forms with boundary matches that are amenable to optimization.
It describes a novel technique for converting problems with Neumann or Robin conditions into equivalent problems with parametric Dirichlet conditions.
The proposed augmented neural forms approach was tested on a set of diverse problems, encompassing first- and second-order ordinary differential equations, as well as first-order systems.
arXiv Detail & Related papers (2024-04-30T11:10:34Z) - Polynomial-time Solver of Tridiagonal QUBO and QUDO problems with Tensor Networks [41.94295877935867]
We present an algorithm for solving tridiagonal Quadratic Unconstrained Binary Optimization (QUBO) problems and Quadratic Unconstrained Discrete Optimization (QUDO) problems with one-neighbor interactions.
Our method is based on the simulation of a quantum state to which we will apply an imaginary time evolution and perform a series of partial traces to obtain the state of maximum amplitude.
arXiv Detail & Related papers (2023-09-19T10:45:15Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - BINN: A deep learning approach for computational mechanics problems
based on boundary integral equations [4.397337158619076]
We proposed the boundary-integral type neural networks (BINN) for the boundary value problems in computational mechanics.
The boundary integral equations are employed to transfer all the unknowns to the boundary, then the unknowns are approximated using neural networks and solved through a training process.
arXiv Detail & Related papers (2023-01-11T14:10:23Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
Filtering equations play a central role in many real-life applications, including numerical weather prediction, finance and engineering.
One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method.
We combine this method with a neural network representation to produce an approximation of the unnormalised conditional distribution of the signal process.
arXiv Detail & Related papers (2022-01-10T11:01:36Z) - Exact imposition of boundary conditions with distance functions in
physics-informed deep neural networks [0.5804039129951741]
We introduce geometry-aware trial functions in artifical neural networks to improve the training in deep learning for partial differential equations.
To exactly impose homogeneous Dirichlet boundary conditions, the trial function is taken as $phi$ multiplied by the PINN approximation.
We present numerical solutions for linear and nonlinear boundary-value problems over domains with affine and curved boundaries.
arXiv Detail & Related papers (2021-04-17T03:02:52Z) - Deep neural network approximation for high-dimensional elliptic PDEs
with boundary conditions [6.079011829257036]
Deep neural networks are capable of approximating solutions to a class of parabolic partial differential equations without incurring the curse of dimension.
The present paper considers an important such model problem, namely the Poisson equation on a domain $Dsubset mathbbRd$ subject to Dirichlet boundary conditions.
It is shown that deep neural networks are capable of representing solutions of that problem without incurring the curse of dimension.
arXiv Detail & Related papers (2020-07-10T13:40:27Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.