Augmented neural forms with parametric boundary-matching operators for solving ordinary differential equations
- URL: http://arxiv.org/abs/2404.19454v2
- Date: Thu, 26 Sep 2024 10:34:40 GMT
- Title: Augmented neural forms with parametric boundary-matching operators for solving ordinary differential equations
- Authors: Adam D. Kypriadis, Isaac E. Lagaris, Aristidis Likas, Konstantinos E. Parsopoulos,
- Abstract summary: This paper introduces a formalism for systematically crafting proper neural forms with boundary matches that are amenable to optimization.
It describes a novel technique for converting problems with Neumann or Robin conditions into equivalent problems with parametric Dirichlet conditions.
The proposed augmented neural forms approach was tested on a set of diverse problems, encompassing first- and second-order ordinary differential equations, as well as first-order systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Approximating solutions of ordinary and partial differential equations constitutes a significant challenge. Based on functional expressions that inherently depend on neural networks, neural forms are specifically designed to precisely satisfy the prescribed initial or boundary conditions of the problem, while providing the approximate solutions in closed form. Departing from the important class of ordinary differential equations, the present work aims to refine and validate the neural forms methodology, paving the ground for further developments in more challenging fields. The main contributions are as follows. First, it introduces a formalism for systematically crafting proper neural forms with adaptable boundary matches that are amenable to optimization. Second, it describes a novel technique for converting problems with Neumann or Robin conditions into equivalent problems with parametric Dirichlet conditions. Third, it outlines a method for determining an upper bound on the absolute deviation from the exact solution. The proposed augmented neural forms approach was tested on a set of diverse problems, encompassing first- and second-order ordinary differential equations, as well as first-order systems. Stiff differential equations have been considered as well. The resulting solutions were subjected to assessment against existing exact solutions, solutions derived through the common penalized neural method, and solutions obtained via contemporary numerical analysis methods. The reported results demonstrate that the augmented neural forms not only satisfy the boundary and initial conditions exactly, but also provide closed-form solutions that facilitate high-quality interpolation and controllable overall precision. These attributes are essential for expanding the application field of neural forms to more challenging problems that are described by partial differential equations.
Related papers
- Transformed Physics-Informed Neural Networks for The Convection-Diffusion Equation [0.0]
Singularly perturbed problems have solutions with steep boundary layers that are hard to resolve numerically.
Traditional numerical methods, such as Finite Difference Methods, require a refined mesh to obtain stable and accurate solutions.
We consider the use of Physics-Informed Neural Networks (PINNs) to produce numerical solutions of singularly perturbed problems.
arXiv Detail & Related papers (2024-09-12T00:24:21Z) - A Deep Learning Framework for Solving Hyperbolic Partial Differential
Equations: Part I [0.0]
This research focuses on the development of a physics informed deep learning framework to approximate solutions to nonlinear PDEs.
The framework naturally handles imposition of boundary conditions (Neumann/Dirichlet), entropy conditions, and regularity requirements.
arXiv Detail & Related papers (2023-07-09T08:27:17Z) - Comparison of Single- and Multi- Objective Optimization Quality for
Evolutionary Equation Discovery [77.34726150561087]
Evolutionary differential equation discovery proved to be a tool to obtain equations with less a priori assumptions.
The proposed comparison approach is shown on classical model examples -- Burgers equation, wave equation, and Korteweg - de Vries equation.
arXiv Detail & Related papers (2023-06-29T15:37:19Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Galerkin Neural Networks: A Framework for Approximating Variational
Equations with Error Control [0.0]
We present a new approach to using neural networks to approximate the solutions of variational equations.
We use a sequence of finite-dimensional subspaces whose basis functions are realizations of a sequence of neural networks.
arXiv Detail & Related papers (2021-05-28T20:25:40Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Solving Differential Equations Using Neural Network Solution Bundles [1.2891210250935146]
We propose a neural network be used as a solution bundle, a collection of solutions to an ODE for various initial states and system parameters.
The solution bundle exhibits fast, parallelizable evaluation of the system state, facilitating the use of Bayesian inference for parameter estimation.
arXiv Detail & Related papers (2020-06-17T02:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.