論文の概要: TraNCE: Transformative Non-linear Concept Explainer for CNNs
- arxiv url: http://arxiv.org/abs/2503.20230v1
- Date: Wed, 26 Mar 2025 04:49:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:22:24.761822
- Title: TraNCE: Transformative Non-linear Concept Explainer for CNNs
- Title(参考訳): TraNCE: CNN用の変換非線形概念記述器
- Authors: Ugochukwu Ejike Akpudo, Yongsheng Gao, Jun Zhou, Andrew Lewis,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は様々なコンピュータビジョンタスクで著しく成功している。
CNNは本質的には説明できないが、概念に基づいた説明可能性手法は、モデルが見たものに対する洞察を提供する。
本研究は,CNN説明可能性文学への3つのオリジナルの貢献について述べる。
- 参考スコア(独自算出の注目度): 18.158983987563623
- License:
- Abstract: Convolutional neural networks (CNNs) have succeeded remarkably in various computer vision tasks. However, they are not intrinsically explainable. While the feature-level understanding of CNNs reveals where the models looked, concept-based explainability methods provide insights into what the models saw. However, their assumption of linear reconstructability of image activations fails to capture the intricate relationships within these activations. Their Fidelity-only approach to evaluating global explanations also presents a new concern. For the first time, we address these limitations with the novel Transformative Nonlinear Concept Explainer (TraNCE) for CNNs. Unlike linear reconstruction assumptions made by existing methods, TraNCE captures the intricate relationships within the activations. This study presents three original contributions to the CNN explainability literature: (i) An automatic concept discovery mechanism based on variational autoencoders (VAEs). This transformative concept discovery process enhances the identification of meaningful concepts from image activations. (ii) A visualization module that leverages the Bessel function to create a smooth transition between prototypical image pixels, revealing not only what the CNN saw but also what the CNN avoided, thereby mitigating the challenges of concept duplication as documented in previous works. (iii) A new metric, the Faith score, integrates both Coherence and Fidelity for a comprehensive evaluation of explainer faithfulness and consistency.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は様々なコンピュータビジョンタスクで著しく成功している。
しかし、本質的な説明はできない。
CNNの機能レベルの理解は、モデルがどこに見えるかを明らかにする一方で、概念ベースの説明可能性メソッドは、モデルが見たものに関する洞察を提供する。
しかし、画像アクティベーションの線形再構成可能性という仮定は、これらのアクティベーション内での複雑な関係を捉えるのに失敗する。
グローバルな説明を評価するためのフィデリティのみのアプローチもまた、新たな懸念を示している。
CNNのためのトランスフォーマティブ非線形概念記述器(TraNCE)により,これらの制約に初めて対処する。
既存の方法による線形再構成の仮定とは異なり、TraNCEはアクティベーション内の複雑な関係をキャプチャする。
本研究は,CNN説明可能性文献への3つのオリジナルの貢献について述べる。
一 変分オートエンコーダ(VAE)に基づく自動概念発見機構
この変換概念発見プロセスは、イメージアクティベーションから意味ある概念の同定を促進する。
二 ベッセル関数を利用した可視化モジュールにより、原型画像画素間のスムーズな遷移を生成し、CNNが見たものだけでなく、CNNが避けたものを明らかにすることにより、以前の研究で記録されたように、概念重複の課題を緩和する。
(三)新しい計量である信仰スコアは、コヒーレンスとフィデリティを統合し、説明者の忠実さと一貫性を包括的に評価する。
関連論文リスト
- LLM-assisted Concept Discovery: Automatically Identifying and Explaining Neuron Functions [15.381209058506078]
以前の研究は、概念の例や事前に定義された概念のセットに基づいて、ニューロンに関連づけられた概念を持っている。
本稿では,マルチモーダルな大規模言語モデルを用いて,自動的かつオープンな概念発見を提案する。
我々は,この新たな画像に対して,サンプルと反例を生成し,ニューロンの反応を評価することにより,それぞれの概念を検証する。
論文 参考訳(メタデータ) (2024-06-12T18:19:37Z) - CoLa-DCE -- Concept-guided Latent Diffusion Counterfactual Explanations [2.3083192626377755]
概念誘導型遅延拡散対実例(CoLa-DCE)を紹介する。
CoLa-DCEは、概念選択と空間条件に関する高度な制御を持つ任意の分類器に対して、概念誘導対物を生成する。
我々は,複数の画像分類モデルとデータセットにまたがって,最小化と理解性のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2024-06-03T14:27:46Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Evaluating the Stability of Semantic Concept Representations in CNNs for
Robust Explainability [0.0]
本稿では,コンピュータビジョンCNNにおける概念表現を扱う際の2つの安定性目標について述べる。
ガイドとなるユースケースは、オブジェクト検出CNNのためのポストホックな説明可能性フレームワークである。
本稿では,概念分離と一貫性の両面を考慮した新しい計量法を提案する。
論文 参考訳(メタデータ) (2023-04-28T14:14:00Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - ECLAD: Extracting Concepts with Local Aggregated Descriptors [6.470466745237234]
そこで本研究では,CNNアクティベーションマップの画素ワイドアグリゲーションから得られた表現に基づいて,概念の自動抽出とローカライズを行う手法を提案する。
本稿では,主成分の画素単位のアノテーションを用いた合成データセットに基づく概念抽出手法の検証手法を提案する。
論文 参考訳(メタデータ) (2022-06-09T14:25:23Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
深部畳み込み神経ネットワーク(CNN)は、脳の機能的類似、視覚野の腹側流の優れたモデルを提供することが示されている。
ここでは、CNNまたは視覚野の内部表現で知られているいくつかの顕著な統計的パターンについて考察する。
我々は、CNNと視覚野が、オブジェクト表現の次元展開/縮小と画像情報の再構成と、同様の密接な関係を持っていることを示す。
論文 参考訳(メタデータ) (2022-05-27T08:06:40Z) - Modeling Temporal Concept Receptive Field Dynamically for Untrimmed
Video Analysis [105.06166692486674]
本稿では,概念に基づくイベント表現の時間的概念受容分野について考察する。
時間的動的畳み込み(TDC)を導入し、概念に基づくイベント分析をより柔軟にする。
異なる係数は、入力ビデオに応じて適切な時間的概念受容フィールドサイズを生成することができる。
論文 参考訳(メタデータ) (2021-11-23T04:59:48Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
畳み込みニューラルネットワーク(CNN)でこの設計をインスタンス化する
実験では、標準ベンチマーク上の従来のフィードフォワードCNNに対して、CNN-Fは敵のロバスト性を大幅に改善した。
論文 参考訳(メタデータ) (2020-07-17T19:32:48Z) - Invertible Concept-based Explanations for CNN Models with Non-negative
Concept Activation Vectors [24.581839689833572]
コンピュータビジョンのための畳み込みニューラルネットワーク(CNN)モデルは強力だが、最も基本的な形式では説明不可能である。
近似線形モデルの特徴的重要性による最近の説明に関する研究は、入力レベル特徴から概念活性化ベクトル(CAV)の形で中間層特徴写像から特徴へと移行した。
本稿では,Ghorbani etal.のACEアルゴリズムを再考し,その欠点を克服するために,別の非可逆的概念ベース説明(ICE)フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-27T17:57:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。