Are We There Yet? Unraveling the State-of-the-Art Graph Network Intrusion Detection Systems
- URL: http://arxiv.org/abs/2503.20281v1
- Date: Wed, 26 Mar 2025 07:11:57 GMT
- Title: Are We There Yet? Unraveling the State-of-the-Art Graph Network Intrusion Detection Systems
- Authors: Chenglong Wang, Pujia Zheng, Jiaping Gui, Cunqing Hua, Wajih Ul Hassan,
- Abstract summary: Graph-based NIDS (GIDS) have attracted considerable attention because of their capability to effectively capture the complex relationships within the graph structures of data communications.<n>Despite their promise, the replicability of these GIDS remain largely unexplored.<n>This study bridges this gap by designing a systematic approach to evaluate state-of-the-art GIDS.
- Score: 19.38026846515868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network Intrusion Detection Systems (NIDS) are vital for ensuring enterprise security. Recently, Graph-based NIDS (GIDS) have attracted considerable attention because of their capability to effectively capture the complex relationships within the graph structures of data communications. Despite their promise, the reproducibility and replicability of these GIDS remain largely unexplored, posing challenges for developing reliable and robust detection systems. This study bridges this gap by designing a systematic approach to evaluate state-of-the-art GIDS, which includes critically assessing, extending, and clarifying the findings of these systems. We further assess the robustness of GIDS under adversarial attacks. Evaluations were conducted on three public datasets as well as a newly collected large-scale enterprise dataset. Our findings reveal significant performance discrepancies, highlighting challenges related to dataset scale, model inputs, and implementation settings. We demonstrate difficulties in reproducing and replicating results, particularly concerning false positive rates and robustness against adversarial attacks. This work provides valuable insights and recommendations for future research, emphasizing the importance of rigorous reproduction and replication studies in developing robust and generalizable GIDS solutions.
Related papers
- Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG) is an advanced technique designed to address the challenges of Artificial Intelligence-Generated Content (AIGC)<n>RAG provides reliable and up-to-date external knowledge, reduces hallucinations, and ensures relevant context across a wide range of tasks.<n>Despite RAG's success and potential, recent studies have shown that the RAG paradigm also introduces new risks, including privacy concerns, adversarial attacks, and accountability issues.
arXiv Detail & Related papers (2025-02-08T06:50:47Z) - Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
Recently, a new type of privacy attack, the model inversion attacks (MIAs), aims to extract sensitive features of private data for training.
Despite the significance, there is a lack of systematic studies that provide a comprehensive overview and deeper insights into MIAs.
This survey aims to summarize up-to-date MIA methods in both attacks and defenses.
arXiv Detail & Related papers (2024-11-15T08:09:28Z) - Adversarial Challenges in Network Intrusion Detection Systems: Research Insights and Future Prospects [0.33554367023486936]
This paper provides a comprehensive review of machine learning-based Network Intrusion Detection Systems (NIDS)
We critically examine existing research in NIDS, highlighting key trends, strengths, and limitations.
We discuss emerging challenges in the field and offer insights for the development of more robust and resilient NIDS.
arXiv Detail & Related papers (2024-09-27T13:27:29Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs)
We propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy.
arXiv Detail & Related papers (2024-09-16T09:06:44Z) - HGOE: Hybrid External and Internal Graph Outlier Exposure for Graph Out-of-Distribution Detection [78.47008997035158]
Graph data exhibits greater diversity but lower robustness to perturbations, complicating the integration of outliers.
We propose the introduction of textbfHybrid External and Internal textbfGraph textbfOutlier textbfExposure (HGOE) to improve graph OOD detection performance.
arXiv Detail & Related papers (2024-07-31T16:55:18Z) - A Survey of Neural Network Robustness Assessment in Image Recognition [4.581878177334397]
In recent years, there has been significant attention given to the robustness assessment of neural networks.
Deep learning's robustness problem is particularly significant, highlighted by the discovery of adversarial attacks on image classification models.
In this survey, we present a detailed examination of both adversarial robustness (AR) and corruption robustness (CR) in neural network assessment.
arXiv Detail & Related papers (2024-04-12T07:19:16Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - TII-SSRC-23 Dataset: Typological Exploration of Diverse Traffic Patterns
for Intrusion Detection [0.5261718469769447]
Existing datasets often fall short, lacking the necessary diversity and alignment with the contemporary network environment.
This paper introduces TII-SSRC-23, a novel and comprehensive dataset designed to overcome these challenges.
arXiv Detail & Related papers (2023-09-14T05:23:36Z) - Toward Enhanced Robustness in Unsupervised Graph Representation
Learning: A Graph Information Bottleneck Perspective [48.01303380298564]
We propose a novel unbiased robust UGRL method called Robust Graph Information Bottleneck (RGIB)
Our RGIB attempts to learn robust node representations against adversarial perturbations by preserving the original information in the benign graph while eliminating the adversarial information in the adversarial graph.
arXiv Detail & Related papers (2022-01-21T06:26:50Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-26T10:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.