Traversing Distortion-Perception Tradeoff using a Single Score-Based Generative Model
- URL: http://arxiv.org/abs/2503.20297v2
- Date: Thu, 03 Apr 2025 07:46:31 GMT
- Title: Traversing Distortion-Perception Tradeoff using a Single Score-Based Generative Model
- Authors: Yuhan Wang, Suzhi Bi, Ying-Jun Angela Zhang, Xiaojun Yuan,
- Abstract summary: distortion-perception tradeoff reveals a fundamental conflict between distortion metrics and perceptual quality.<n>We show that a single score network can effectively and flexibly traverse the DP tradeoff for general denoising problems.
- Score: 35.91741991271154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The distortion-perception (DP) tradeoff reveals a fundamental conflict between distortion metrics (e.g., MSE and PSNR) and perceptual quality. Recent research has increasingly concentrated on evaluating denoising algorithms within the DP framework. However, existing algorithms either prioritize perceptual quality by sacrificing acceptable distortion, or focus on minimizing MSE for faithful restoration. When the goal shifts or noisy measurements vary, adapting to different points on the DP plane needs retraining or even re-designing the model. Inspired by recent advances in solving inverse problems using score-based generative models, we explore the potential of flexibly and optimally traversing DP tradeoffs using a single pre-trained score-based model. Specifically, we introduce a variance-scaled reverse diffusion process and theoretically characterize the marginal distribution. We then prove that the proposed sample process is an optimal solution to the DP tradeoff for conditional Gaussian distribution. Experimental results on two-dimensional and image datasets illustrate that a single score network can effectively and flexibly traverse the DP tradeoff for general denoising problems.
Related papers
- Score-Based Turbo Message Passing for Plug-and-Play Compressive Image Recovery [24.60447255507278]
Off-the-shelf image denoisers mostly rely on some generic or hand-crafted priors for denoising.
We devise a message passing framework that integrates a score-based minimum mean squared error (MMSE) denoiser for compressive image recovery.
arXiv Detail & Related papers (2025-03-28T04:30:58Z) - Reconciling Stochastic and Deterministic Strategies for Zero-shot Image Restoration using Diffusion Model in Dual [47.141811103506036]
We propose a novel zero-shot image restoration scheme dubbed Reconciling Model in Dual (RDMD)<n>RDMD uses only a bftextsingle pre-trained diffusion model to construct texttwo regularizers.<n>Our proposed method could achieve superior results compared to existing approaches on both the FFHQ and ImageNet datasets.
arXiv Detail & Related papers (2025-03-03T08:25:22Z) - Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction [31.503662384666274]
In science and engineering, the goal is to infer an unknown image from a small number of measurements collected from a known forward model describing certain imaging modality.
Motivated Score-based diffusion models, due to its empirical success, have emerged as an impressive candidate of an exemplary prior in image reconstruction.
arXiv Detail & Related papers (2024-03-25T15:58:26Z) - Divide-and-Conquer Posterior Sampling for Denoising Diffusion Priors [21.0128625037708]
We present an innovative framework, divide-and-conquer posterior sampling.
It reduces the approximation error associated with current techniques without the need for retraining.
We demonstrate the versatility and effectiveness of our approach for a wide range of Bayesian inverse problems.
arXiv Detail & Related papers (2024-03-18T01:47:24Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
Existing customization methods require access to multiple reference examples to align pre-trained diffusion probabilistic models with user-provided concepts.
This paper aims to address the challenge of DPM customization when the only available supervision is a differentiable metric defined on the generated contents.
We propose a novel method AdjointDPM, which first generates new samples from diffusion models by solving the corresponding probability-flow ODEs.
It then uses the adjoint sensitivity method to backpropagate the gradients of the loss to the models' parameters.
arXiv Detail & Related papers (2023-07-20T09:06:21Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Diffusion Model Based Posterior Sampling for Noisy Linear Inverse Problems [14.809545109705256]
This paper presents a fast and effective solution by proposing a simple closed-form approximation to the likelihood score.
For both diffusion and flow-based models, extensive experiments are conducted on various noisy linear inverse problems.
Our method demonstrates highly competitive or even better reconstruction performances while being significantly faster than all the baseline methods.
arXiv Detail & Related papers (2022-11-20T01:09:49Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - The Deep Generative Decoder: MAP estimation of representations improves
modeling of single-cell RNA data [0.0]
We present a simple generative model that computes model parameters and representations directly via maximum a posteriori (MAP) estimation.
The advantages of this approach are its simplicity and its capability to provide representations of much smaller dimensionality than a comparable VAE.
arXiv Detail & Related papers (2021-10-13T12:17:46Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.