Divide-and-Conquer Posterior Sampling for Denoising Diffusion Priors
- URL: http://arxiv.org/abs/2403.11407v2
- Date: Mon, 11 Nov 2024 15:31:42 GMT
- Title: Divide-and-Conquer Posterior Sampling for Denoising Diffusion Priors
- Authors: Yazid Janati, Badr Moufad, Alain Durmus, Eric Moulines, Jimmy Olsson,
- Abstract summary: We present an innovative framework, divide-and-conquer posterior sampling.
It reduces the approximation error associated with current techniques without the need for retraining.
We demonstrate the versatility and effectiveness of our approach for a wide range of Bayesian inverse problems.
- Score: 21.0128625037708
- License:
- Abstract: Recent advancements in solving Bayesian inverse problems have spotlighted denoising diffusion models (DDMs) as effective priors. Although these have great potential, DDM priors yield complex posterior distributions that are challenging to sample. Existing approaches to posterior sampling in this context address this problem either by retraining model-specific components, leading to stiff and cumbersome methods, or by introducing approximations with uncontrolled errors that affect the accuracy of the produced samples. We present an innovative framework, divide-and-conquer posterior sampling, which leverages the inherent structure of DDMs to construct a sequence of intermediate posteriors that guide the produced samples to the target posterior. Our method significantly reduces the approximation error associated with current techniques without the need for retraining. We demonstrate the versatility and effectiveness of our approach for a wide range of Bayesian inverse problems. The code is available at \url{https://github.com/Badr-MOUFAD/dcps}
Related papers
- A Mixture-Based Framework for Guiding Diffusion Models [19.83064246586143]
Denoising diffusion models have driven significant progress in the field of Bayesian inverse problems.
Recent approaches use pre-trained diffusion models as priors to solve a wide range of such problems.
This work proposes a novel mixture approximation of these intermediate distributions.
arXiv Detail & Related papers (2025-02-05T16:26:06Z) - Enhancing Diffusion Posterior Sampling for Inverse Problems by Integrating Crafted Measurements [45.70011319850862]
Diffusion models have emerged as a powerful foundation model for visual generation.
Current posterior sampling based methods take the measurement into the posterior sampling to infer the distribution of the target data.
We show that high-frequency information can be prematurely introduced during the early stages, which could induce larger posterior estimate errors.
We propose a novel diffusion posterior sampling method DPS-CM, which incorporates a Crafted Measurement.
arXiv Detail & Related papers (2024-11-15T00:06:57Z) - Think Twice Before You Act: Improving Inverse Problem Solving With MCMC [40.5682961122897]
We propose textbfDiffusion textbfPosterior textbfMCMC (textbfDPMC) to solve inverse problems with pretrained diffusion models.
Our algorithm outperforms DPS with less number of evaluations across nearly all tasks, and is competitive among existing approaches.
arXiv Detail & Related papers (2024-09-13T06:10:54Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
We propose a novel approach to solve inverse problems with a diffusion prior from an amortized variational inference perspective.
Our amortized inference learns a function that directly maps measurements to the implicit posterior distributions of corresponding clean data, enabling a single-step posterior sampling even for unseen measurements.
arXiv Detail & Related papers (2024-07-23T02:14:18Z) - Scalable diffusion posterior sampling in infinite-dimensional inverse problems [5.340736751238338]
We propose a scalable diffusion posterior sampling (SDPS) method to bypass forward mapping evaluations during sampling.
The approach is shown to generalize to infinite-dimensional diffusion models and is validated through rigorous convergence analysis and high-dimensional CT imaging experiments.
arXiv Detail & Related papers (2024-05-24T15:33:27Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
We extend diffusion solvers to handle noisy (non)linear inverse problems via approximation of the posterior sampling.
Our method demonstrates that diffusion models can incorporate various measurement noise statistics.
arXiv Detail & Related papers (2022-09-29T11:12:27Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
We show that current solvers throw the sample path off the data manifold, and hence the error accumulates.
To address this, we propose an additional correction term inspired by the manifold constraint.
We show that our method is superior to the previous methods both theoretically and empirically.
arXiv Detail & Related papers (2022-06-02T09:06:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.