Tunable coherent microwave beam splitter and combiner at the single-photon level
- URL: http://arxiv.org/abs/2503.20353v1
- Date: Wed, 26 Mar 2025 09:26:46 GMT
- Title: Tunable coherent microwave beam splitter and combiner at the single-photon level
- Authors: Y. -H. Huang, K. -M. Hsieh, F. Aziz, Z. Q. Niu, P. Y. Wen, Y. -T. Cheng, Y. -S. Tsai, J. C. Chen, Xin Wang, A. F. Kockum, Z. -R. Lin, Y. -H. Lin, I. -C. Hoi,
- Abstract summary: A beam splitter is a key component used to direct and combine light paths in various optical and microwave systems.<n>We present a nonlinear beam splitter and beam combiner utilizing a frequency-tunable superconducting artificial atom in a one-dimensional open waveguide.
- Score: 3.21289372395737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A beam splitter is a key component used to direct and combine light paths in various optical and microwave systems. It plays a crucial role in devices like interferometers, such as the Mach-Zehnder and Hong-Ou-Mandel setups, where it splits light into different paths for interference measurements. These measurements are vital for precise phase and coherence testing in both classical and quantum optical experiments. In this work, we present a nonlinear beam splitter and beam combiner utilizing a frequency-tunable superconducting artificial atom in a one-dimensional open waveguide. This beam splitter is highly versatile, with adjustable transparency ranging from unity to zero for signals at the single-photon level. Additionally, the beam combiner can merge two coherent beams, generating interference fringes as the relative phase between them varies.
Related papers
- Optimizing the quantum interference between single photons and local oscillator with photon correlations [0.0]
We report on two homodyne photon-correlation techniques enabling the precise measurement of the overlap between a single photon generated by a quantum dot-cavity device and pulsed laser light.
The different statistics of interfering fields lead to specific signatures of the quantum interference on the photon correlations at the output of the interfering beam splitter.
We compare the behavior of maximized overlap, measuring either the Hong-Ou-Mandel visibility between both outputs or the photon bunching at a single output.
arXiv Detail & Related papers (2025-04-16T14:19:51Z) - Single-photon scattering in giant-atom topological-waveguide-QED systems [1.2479554210753663]
We study single-photon scattering in a Su-Schrieffer-Heeger (SSH) waveguide coupled to either one or two two-level giant atoms.
We find that the collective behavior of the two giant atoms can be adjusted by quantum interference effect and topological effect.
This work will inspire the development of controllable single-photon devices based on the giant-atom topological-waveguide-QED systems.
arXiv Detail & Related papers (2024-08-26T10:57:23Z) - Parametric Light-Matter Interaction in the Single-Photon Strong Coupling Limit [0.0]
In this article, we demonstrate a new paradigm of parametrically coupled microwave circuits.
We replace one linear microwave cavity with a superconducting transmon qubit.
Applying a strong sideband drive results in an on-demand, non-linear Jaynes-Cummings interaction with the linear resonator.
arXiv Detail & Related papers (2024-07-02T07:45:34Z) - A Versatile Hong-Ou-Mandel Interference Experiment in Optical Fiber for the Undergraduate Laboratory [0.0]
Hong-Ou-Mandel (HOM) interference is a quantum optics laboratory experiment that has recently become more accessible to undergraduate students.
We present an alternative optical fiber-based apparatus that gives a consistently reproducible experiment.
arXiv Detail & Related papers (2024-03-29T16:26:28Z) - Spectral signature of high-order photon processes mediated by
Cooper-pair pairing [0.0]
Superconducting circuits have almost exclusively operated in the regime where phase fluctuations are smaller than unity.
Superconducting circuits have almost exclusively operated in the regime where phase fluctuations are smaller than unity.
This work explores a new regime of high-order photon interactions in microwave quantum optics, with applications ranging from multi-photon quantum logic to the study of highly correlated microwave radiation.
arXiv Detail & Related papers (2023-12-22T21:29:25Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Enhanced-sensitivity interferometry with phase-sensitive unbiased
multiports [68.8204255655161]
We introduce interferometric devices by combining optical feedback with unbiased multiports.
Unlike traditional beam dividers, unbiased multiports allow light to reflect back out of the port from which it originated.
arXiv Detail & Related papers (2023-05-31T18:18:02Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - An Easier-To-Align Hong-Ou-Mandel Interference Demonstration [0.0]
Hong-Ou-Mandel interference experiment is a fundamental demonstration of nonclassical interference.
Experiment involves the interference of two photons reaching a symmetric beamsplitter.
arXiv Detail & Related papers (2023-01-17T20:12:03Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Tunable directional photon scattering from a pair of superconducting
qubits [105.54048699217668]
In the optical and microwave frequency ranges tunable directionality can be achieved by applying external magnetic fields.
We demonstrate tunable directional scattering with just two transmon qubits coupled to a transmission line.
arXiv Detail & Related papers (2022-05-06T15:21:44Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.