Optimizing the quantum interference between single photons and local oscillator with photon correlations
- URL: http://arxiv.org/abs/2504.12111v1
- Date: Wed, 16 Apr 2025 14:19:51 GMT
- Title: Optimizing the quantum interference between single photons and local oscillator with photon correlations
- Authors: Hubert Lam, Juan R. Álvarez, Petr Steindl, Ilse Maillette de Buy Wenniger, Stephen Wein, Anton Pishchagin, Thi Huong Au, Sebastien Boissier, Aristide Lemaître, Wolfgang Löffler, Nadia Belabas, Dario A. Fioretto, Pascale Senellart,
- Abstract summary: We report on two homodyne photon-correlation techniques enabling the precise measurement of the overlap between a single photon generated by a quantum dot-cavity device and pulsed laser light.<n>The different statistics of interfering fields lead to specific signatures of the quantum interference on the photon correlations at the output of the interfering beam splitter.<n>We compare the behavior of maximized overlap, measuring either the Hong-Ou-Mandel visibility between both outputs or the photon bunching at a single output.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum interference between a coherent state and a single photon is an important tool in continuous variable optical quantum technologies to characterize and engineer non-Gaussian quantum states. Semiconductor quantum dots, which have recently emerged as a key platform for efficient single-photon generation, could become interesting assets in this context. An essential parameter for interfering single photons and classical fields is the mean wavepacket overlap between both fields. Here, we report on two homodyne photon-correlation techniques enabling the precise measurement of the overlap between a single photon generated by a quantum dot-cavity device and pulsed laser light. The different statistics of interfering fields lead to specific signatures of the quantum interference on the photon correlations at the output of the interfering beam splitter. We compare the behavior of maximized overlap, measuring either the Hong-Ou-Mandel visibility between both outputs or the photon bunching at a single output. Through careful tailoring of the laser light in various degrees of freedom, we maximize the overlap to $76\,\%$, with limitations primarily due to mismatched spectral and temporal profiles and low-frequency charge noise in the single-photon source.
Related papers
- Multiphoton interference in a single-spatial-mode quantum walk [0.0]
Multiphoton interference is crucial to many photonic quantum technologies.
Here, we implement a quantum walk in a highly stable, low-loss, multiport interferometer with up to 24 ultrafast time bins.
Our results demonstrate that ultrafast time bins are a promising platform to observe large-scale multiphoton interference.
arXiv Detail & Related papers (2024-09-17T18:14:54Z) - Engineering the impact of phonon dephasing on the coherence of a WSe$_{2}$ single-photon source via cavity quantum electrodynamics [36.88715167286119]
Emitter dephasing is one of the key issues in the performance of solid-state single photon sources.
We show that it is possible to tune and engineer the coherence of photons emitted from a single WSe$$ monolayer dot via selectively coupling it to a spectral cavity resonance.
arXiv Detail & Related papers (2023-07-13T16:41:06Z) - Violation of Bell inequality by photon scattering on a two-level emitter [4.810881229568956]
Entanglement, the non-local correlations present in quantum systems, is a curious feature of quantum mechanics and the fuel of quantum technology.
We show how a single two-level emitter deterministically coupled to light in a nanophotonic waveguide is used to realize genuine photonic quantum entanglement for excitation at the single photon level.
arXiv Detail & Related papers (2023-06-22T11:01:24Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Tailoring photon statistics with an atom-based two-photon interferometer [0.0]
We actively control the quantum phase between the transmitted and incoherently scattered two-photon component.
We observe interference fringes in the normalized photon coincidence rate, varying from antibunching to bunching.
Our results lend themselves to the development of novel quantum light sources.
arXiv Detail & Related papers (2022-12-19T16:24:54Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Dispersion cancellation in a quantum interferometer with independent
single photons [0.0]
We show that an effect of group velocity dispersion on the two-photon interference can be cancelled if two independent single photons experience the same amount of pulse broadening.
As multi-path quantum interferometers are at the heart of quantum communication, photonic quantum computing, and boson sampling applications, our work should find wide applicability in quantum information science.
arXiv Detail & Related papers (2020-08-15T00:41:33Z) - Tunable quantum interference using a topological source of
indistinguishable photon pairs [0.0]
We demonstrate the use of a two-dimensional array of ring resonators to generate indistinguishable photon pairs.
We show that the linear dispersion of the edge states over a broad bandwidth allows us to tune the correlations.
Our results pave the way for scalable and tunable sources of squeezed light.
arXiv Detail & Related papers (2020-06-04T18:11:30Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.