論文の概要: Pluggable Style Representation Learning for Multi-Style Transfer
- arxiv url: http://arxiv.org/abs/2503.20368v1
- Date: Wed, 26 Mar 2025 09:44:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:20:25.124981
- Title: Pluggable Style Representation Learning for Multi-Style Transfer
- Title(参考訳): マルチスタイル転送のためのプラガブルスタイル表現学習
- Authors: Hongda Liu, Longguang Wang, Weijun Guan, Ye Zhang, Yulan Guo,
- Abstract要約: スタイルモデリングと転送を分離してスタイル転送フレームワークを開発する。
スタイルモデリングでは,スタイル情報をコンパクトな表現に符号化するスタイル表現学習方式を提案する。
スタイル転送のために,プラガブルなスタイル表現を用いて多様なスタイルに適応するスタイル認識型マルチスタイル転送ネットワーク(SaMST)を開発した。
- 参考スコア(独自算出の注目度): 41.09041735653436
- License:
- Abstract: Due to the high diversity of image styles, the scalability to various styles plays a critical role in real-world applications. To accommodate a large amount of styles, previous multi-style transfer approaches rely on enlarging the model size while arbitrary-style transfer methods utilize heavy backbones. However, the additional computational cost introduced by more model parameters hinders these methods to be deployed on resource-limited devices. To address this challenge, in this paper, we develop a style transfer framework by decoupling the style modeling and transferring. Specifically, for style modeling, we propose a style representation learning scheme to encode the style information into a compact representation. Then, for style transferring, we develop a style-aware multi-style transfer network (SaMST) to adapt to diverse styles using pluggable style representations. In this way, our framework is able to accommodate diverse image styles in the learned style representations without introducing additional overhead during inference, thereby maintaining efficiency. Experiments show that our style representation can extract accurate style information. Moreover, qualitative and quantitative results demonstrate that our method achieves state-of-the-art performance in terms of both accuracy and efficiency. The codes are available in https://github.com/The-Learning-And-Vision-Atelier-LAVA/SaMST.
- Abstract(参考訳): 画像スタイルの多様性が高いため、様々なスタイルへのスケーラビリティは現実世界のアプリケーションにおいて重要な役割を果たす。
多数のスタイルに対応するため、従来のマルチスタイル転送手法はモデルサイズを拡大することに依存し、任意のスタイル転送方式は重いバックボーンを使用する。
しかし、より多くのモデルパラメータによって導入された追加の計算コストは、これらの手法をリソース制限されたデバイスにデプロイすることを妨げている。
この課題に対処するために、我々はスタイルモデリングと転送を分離したスタイル転送フレームワークを開発する。
具体的には、スタイルモデリングのために、スタイル情報をコンパクトな表現にエンコードするスタイル表現学習スキームを提案する。
そこで,我々は,プラグイン可能なスタイル表現を用いて,多様なスタイルに適応するスタイル認識型マルチスタイルトランスファーネットワーク(SaMST)を開発した。
このようにして、我々のフレームワークは、推論中に追加のオーバーヘッドを発生させることなく、学習スタイル表現における多様な画像スタイルに対応でき、効率を維持できる。
実験により,我々のスタイル表現が正確なスタイル情報を抽出できることが示されている。
さらに, 定性的かつ定量的な結果から, 精度と効率の両面から, 本手法が最先端性能を実現することを示す。
コードはhttps://github.com/The-Learning-And-Vision-Atelier-LAVA/SaMSTで公開されている。
関連論文リスト
- Ada-adapter:Fast Few-shot Style Personlization of Diffusion Model with Pre-trained Image Encoder [57.574544285878794]
Ada-Adapterは拡散モデルの少数ショットスタイルのパーソナライズのための新しいフレームワークである。
提案手法は,単一の参照画像を用いたゼロショット方式の効率的な転送を可能にする。
フラットアートや3Dレンダリング,ロゴデザインなど,さまざまな芸術的スタイルに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-07-08T02:00:17Z) - StyleShot: A Snapshot on Any Style [20.41380860802149]
テスト時間チューニングを伴わない汎用的なスタイル転送には,優れたスタイル表現が不可欠であることを示す。
スタイル認識型エンコーダと、StyleGalleryと呼ばれるよく編成されたスタイルデータセットを構築することで、これを実現する。
当社のアプローチであるStyleShotは,テストタイムチューニングを必要とせずに,さまざまなスタイルを模倣する上で,シンプルかつ効果的なものです。
論文 参考訳(メタデータ) (2024-07-01T16:05:18Z) - Rethink Arbitrary Style Transfer with Transformer and Contrastive Learning [11.900404048019594]
本稿では,スタイリング画像の品質向上のための革新的手法を提案する。
まず、コンテンツとスタイルの特徴の整合性を改善する手法であるスタイル一貫性インスタンス正規化(SCIN)を提案する。
さらに,様々なスタイル間の関係を理解するために,インスタンスベースのコントラスト学習(ICL)アプローチを開発した。
論文 参考訳(メタデータ) (2024-04-21T08:52:22Z) - StylerDALLE: Language-Guided Style Transfer Using a Vector-Quantized
Tokenizer of a Large-Scale Generative Model [64.26721402514957]
本論文では,自然言語を用いて抽象芸術スタイルを記述するスタイル転送手法であるStylerDALLEを提案する。
具体的には、非自己回帰的なトークンシーケンス変換として、言語誘導型転送タスクを定式化する。
スタイル情報を組み込むために,CLIPに基づく言語指導による強化学習戦略を提案する。
論文 参考訳(メタデータ) (2023-03-16T12:44:44Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST)は、新しいスタイルの学習・伝達フレームワークである。
入力依存温度を導入することで,スタイル伝達のための適応型コントラスト学習方式を提案する。
本フレームワークは,スタイル表現とスタイル伝達のための並列コントラスト学習方式,スタイル分布を効果的に学習するためのドメイン拡張モジュール,スタイル伝達のための生成ネットワークという,3つの重要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-03-09T04:35:00Z) - Style-Agnostic Reinforcement Learning [9.338454092492901]
本稿では,スタイル伝達と逆学習の両方を用いて,スタイル非依存表現を学習する新しい手法を提案する。
本手法は,固有対向型生成器から生成される多様な画像スタイルでアクターを訓練する。
提案手法は,Procgen and Distracting Control Suiteベンチマークにおける最先端の手法よりも,競争力や性能の向上が期待できる。
論文 参考訳(メタデータ) (2022-08-31T13:45:00Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) は、新しいスタイル表現学習法である。
本フレームワークは,スタイルコード符号化のための多層スタイルプロジェクタ,スタイル分布を効果的に学習するためのドメイン拡張モジュール,画像スタイル転送のための生成ネットワークという,3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-05-19T13:11:24Z) - Arbitrary Style Transfer via Multi-Adaptation Network [109.6765099732799]
所望のスタイル転送は、内容画像と参照されたスタイル絵が与えられた場合、そのスタイル絵の色調と鮮やかなストロークパターンで内容画像を描画する。
新たな不整合損失関数により,本ネットワークは,様々な入力画像に適応する主文パターンと正確なコンテンツ構造を抽出できる。
論文 参考訳(メタデータ) (2020-05-27T08:00:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。