論文の概要: Learning Data-Driven Uncertainty Set Partitions for Robust and Adaptive Energy Forecasting with Missing Data
- arxiv url: http://arxiv.org/abs/2503.20410v1
- Date: Wed, 26 Mar 2025 10:38:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:22:08.382744
- Title: Learning Data-Driven Uncertainty Set Partitions for Robust and Adaptive Energy Forecasting with Missing Data
- Title(参考訳): 欠測データを用いたロバストおよび適応型エネルギー予測のためのデータ駆動不確実性集合分割の学習
- Authors: Akylas Stratigakos, Panagiotis Andrianesis,
- Abstract要約: 短期的な風力発電予測モデルでは、投入時に入力データ(機能)が利用可能であることを前提としている。
機器の故障、破壊、サイバー攻撃は、そのようなモデルが運用に使用される際に欠落する可能性がある。
適応的ロバスト最適化と対向機械学習を用いて、不足したデータをシームレスに操作する予測モデルを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Short-term forecasting models typically assume the availability of input data (features) when they are deployed and in use. However, equipment failures, disruptions, cyberattacks, may lead to missing features when such models are used operationally, which could negatively affect forecast accuracy, and result in suboptimal operational decisions. In this paper, we use adaptive robust optimization and adversarial machine learning to develop forecasting models that seamlessly handle missing data operationally. We propose linear- and neural network-based forecasting models with parameters that adapt to available features, combining linear adaptation with a novel algorithm for learning data-driven uncertainty set partitions. The proposed adaptive models do not rely on identifying historical missing data patterns and are suitable for real-time operations under stringent time constraints. Extensive numerical experiments on short-term wind power forecasting considering horizons from 15 minutes to 4 hours ahead illustrate that our proposed adaptive models are on par with imputation when data are missing for very short periods (e.g., when only the latest measurement is missing) whereas they significantly outperform imputation when data are missing for longer periods. We further provide insights by showcasing how linear adaptation and data-driven partitions (even with a few subsets) approach the performance of the optimal, yet impractical, method of retraining for every possible realization of missing data.
- Abstract(参考訳): 短期予測モデルは、通常、それらがデプロイされ、使用されているときに、入力データ(機能)の可用性を前提とします。
しかし、機器の故障、破壊、サイバー攻撃は、そのようなモデルが運用に使用される際に欠落する特徴を生じさせ、予測精度に悪影響を及ぼし、最適以下の運用決定をもたらす可能性がある。
本稿では、適応的ロバスト最適化と対向機械学習を用いて、欠落したデータをシームレスに操作する予測モデルを開発する。
データ駆動の不確実性集合分割を学習するための線形適応と新しいアルゴリズムを組み合わせることで、利用可能な特徴に適応するパラメータを持つ線形およびニューラルネットワークベースの予測モデルを提案する。
提案した適応モデルでは,履歴欠落したデータパターンの同定には依存せず,厳密な時間制約下でのリアルタイム操作に適している。
15分から4時間前の地平線を考慮した短期風力予測に関する広範囲な数値実験により, 提案した適応モデルが, 非常に短い期間(例えば, 最新の測定値のみの欠落時)にデータ欠落した場合と同等であることを示す一方で, 長期間にわたってデータが欠落した場合の計算精度は有意に向上することを示した。
さらに、線形適応とデータ駆動分割(少数の部分集合であっても)が、欠落したデータの実現可能なすべての実現のために、最適な、しかし非現実的な、再訓練方法のパフォーマンスにどのようにアプローチするかを示すことで、洞察を提供する。
関連論文リスト
- Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
我々は、訓練中にデータポイントを除去する影響を定量化する、軌跡特異的な離脱の影響の概念を定式化する。
軌道固有LOOの効率的な近似を可能にする新しい手法であるデータ値埋め込みを提案する。
データバリューの埋め込みは、トレーニングデータの順序付けをキャプチャするので、モデルトレーニングのダイナミクスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-12-12T18:28:55Z) - Certain and Approximately Certain Models for Statistical Learning [4.318959672085627]
特定のトレーニングデータや対象モデルに対して,不足値を持つデータから,正確なモデルを直接学習することが可能であることを示す。
我々は、理論的に保証された効率的なアルゴリズムを構築し、この必要条件を確認し、計算が不要な場合に正確なモデルを返す。
論文 参考訳(メタデータ) (2024-02-27T22:49:33Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
本稿では,ガウス過程(GP)を基礎構造を持つ平均回帰時系列の予測に適用する。
GPは、平均予測だけでなく、将来の軌道上の確率分布全体を予測する可能性を提供する。
これは、不正なボラティリティ評価が資本損失につながる場合、正確な予測だけでは十分でない金融状況において特に有益である。
論文 参考訳(メタデータ) (2024-02-23T06:09:45Z) - Adaptive scheduling for adaptive sampling in POS taggers construction [0.27624021966289597]
音声タグ作成における機械学習の新たな手法として適応的サンプリングのための適応的スケジューリングを提案する。
本研究では,関数モデルとともに幾何学的に学習曲線の形状を分析し,任意のタイミングで学習曲線を増減する。
また,評価の一時的なインフレーションを受けるトレーニングデータベースの領域に注意を払い,サンプリングの堅牢性も向上する。
論文 参考訳(メタデータ) (2024-02-04T15:02:17Z) - Quilt: Robust Data Segment Selection against Concept Drifts [30.62320149405819]
継続的機械学習パイプラインは、モデルが定期的にデータストリームでトレーニングされる産業環境で一般的である。
概念ドリフトは、データXとラベルy、P(X, y)の結合分布が時間とともに変化し、おそらくモデルの精度が低下するデータストリームで発生する。
既存のコンセプトドリフト適応アプローチは、主にモデルを新しいデータに更新することに集中し、ドリフトした履歴データを破棄する傾向がある。
モデル精度を最大化するデータセグメントを識別および選択するためのデータ中心フレームワークであるQultを提案する。
論文 参考訳(メタデータ) (2023-12-15T11:10:34Z) - Orthogonal Uncertainty Representation of Data Manifold for Robust
Long-Tailed Learning [52.021899899683675]
長い尾の分布を持つシナリオでは、尾のサンプルが不足しているため、モデルが尾のクラスを識別する能力は制限される。
モデルロバストネスの長期的現象を改善するために,特徴埋め込みの直交不確実性表現(OUR)とエンドツーエンドのトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-10-16T05:50:34Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Parameter-free Online Test-time Adaptation [19.279048049267388]
実世界の様々なシナリオにおいて,テスト時間適応手法が事前学習されたモデルにどのような効果をもたらすかを示す。
我々は特に「保守的」なアプローチを提案し、ラプラシアン適応最大推定(LAME)を用いてこの問題に対処する。
提案手法では,既存の手法よりもシナリオの平均精度がはるかに高く,メモリフットプリントもはるかに高速である。
論文 参考訳(メタデータ) (2022-01-15T00:29:16Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Time-Series Imputation with Wasserstein Interpolation for Optimal
Look-Ahead-Bias and Variance Tradeoff [66.59869239999459]
ファイナンスでは、ポートフォリオ最適化モデルをトレーニングする前に、損失の計算を適用することができる。
インキュベーションのために全データセットを使用するルックアヘッドバイアスと、トレーニングデータのみを使用することによるインキュベーションの大きなばらつきとの間には、本質的にトレードオフがある。
提案手法は,提案法における差分とルックアヘッドバイアスのトレードオフを最適に制御するベイズ後部コンセンサス分布である。
論文 参考訳(メタデータ) (2021-02-25T09:05:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。