論文の概要: Diffusion Counterfactuals for Image Regressors
- arxiv url: http://arxiv.org/abs/2503.20595v1
- Date: Wed, 26 Mar 2025 14:42:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:22:26.591110
- Title: Diffusion Counterfactuals for Image Regressors
- Title(参考訳): 画像回帰器の拡散対策
- Authors: Trung Duc Ha, Sidney Bender,
- Abstract要約: 拡散型生成モデルを用いて、画像回帰タスクの反実的説明を生成する2つの方法を提案する。
どちらもCelebA-HQと合成データセット上で現実的でセマンティックでスムーズな偽物を生成する。
回帰反事実に対して,特徴の変化は予測値の領域に依存することがわかった。
- 参考スコア(独自算出の注目度): 1.534667887016089
- License:
- Abstract: Counterfactual explanations have been successfully applied to create human interpretable explanations for various black-box models. They are handy for tasks in the image domain, where the quality of the explanations benefits from recent advances in generative models. Although counterfactual explanations have been widely applied to classification models, their application to regression tasks remains underexplored. We present two methods to create counterfactual explanations for image regression tasks using diffusion-based generative models to address challenges in sparsity and quality: 1) one based on a Denoising Diffusion Probabilistic Model that operates directly in pixel-space and 2) another based on a Diffusion Autoencoder operating in latent space. Both produce realistic, semantic, and smooth counterfactuals on CelebA-HQ and a synthetic data set, providing easily interpretable insights into the decision-making process of the regression model and reveal spurious correlations. We find that for regression counterfactuals, changes in features depend on the region of the predicted value. Large semantic changes are needed for significant changes in predicted values, making it harder to find sparse counterfactuals than with classifiers. Moreover, pixel space counterfactuals are more sparse while latent space counterfactuals are of higher quality and allow bigger semantic changes.
- Abstract(参考訳): 様々なブラックボックスモデルに対する人間の解釈可能な説明を作成するために、カウンターファクトな説明がうまく適用されている。
画像領域のタスクには便利で、説明の質は、生成モデルにおける最近の進歩の恩恵を受ける。
逆ファクト的説明は分類モデルに広く適用されてきたが、回帰問題への応用はいまだに未検討である。
拡散型生成モデルを用いて画像回帰タスクの反実的説明を作成する手法を2つ提案し、空間性と品質の課題に対処する。
1) 画素空間で直接動作する拡散確率モデルに基づくもの
2) 潜時空間で動作する拡散オートエンコーダに基づく別の方法。
どちらもCelebA-HQと合成データセット上で現実的でセマンティックでスムーズな偽物を生成し、回帰モデルの意思決定プロセスに対する容易に解釈可能な洞察を与え、突発的な相関を明らかにする。
回帰反事実に対して,特徴の変化は予測値の領域に依存することがわかった。
予測値の大幅な変更には大きな意味的変化が必要であり、分類器よりも疎い反事実を見つけるのが難しくなる。
さらに、ピクセル空間の反ファクトはより疎いが、潜在空間の反ファクトはより高い品質であり、より大きな意味変化を可能にする。
関連論文リスト
- MacDiff: Unified Skeleton Modeling with Masked Conditional Diffusion [14.907473847787541]
人間の骨格モデリングのための統合フレームワークとして,Masked Diffusion Conditional (MacDiff)を提案する。
まず,拡散モデルを用いて効率的な骨格表現学習を行う。
MacDiffは、生成タスクの能力を維持しながら、表現学習ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-09-16T17:06:10Z) - Latent diffusion models for parameterization and data assimilation of facies-based geomodels [0.0]
拡散モデルは、ランダムノイズを特徴とする入力場から新しい地質学的実現を生成するために訓練される。
遅延拡散モデルは、ジオモデリングソフトウェアからのサンプルと視覚的に整合した実現を提供する。
論文 参考訳(メタデータ) (2024-06-21T01:32:03Z) - Causal Diffusion Autoencoders: Toward Counterfactual Generation via Diffusion Probabilistic Models [17.124075103464392]
拡散モデル(DPM)は高品質の画像生成における最先端技術となっている。
DPMは、解釈可能な意味論や制御可能な意味論を持たない任意の雑音潜在空間を持つ。
本稿では,拡散に基づく因果表現学習フレームワークCausalDiffAEを提案する。
論文 参考訳(メタデータ) (2024-04-27T00:09:26Z) - Effective Data Augmentation With Diffusion Models [65.09758931804478]
我々は、事前訓練されたテキスト・画像拡散モデルによりパラメータ化された画像・画像変換によるデータ拡張の多様性の欠如に対処する。
本手法は,市販の拡散モデルを用いて画像のセマンティクスを編集し,いくつかのラベル付き例から新しい視覚概念に一般化する。
本手法は,実世界の雑草認識タスクと数ショット画像分類タスクにおいて評価し,テスト領域における精度の向上を観察する。
論文 参考訳(メタデータ) (2023-02-07T20:42:28Z) - Diffusion Visual Counterfactual Explanations [51.077318228247925]
VCE(Visual Counterfactual Explanations)は、画像の決定を理解するための重要なツールである。
VCEの生成に対する現在のアプローチは、逆向きに堅牢なモデルに制限されており、しばしば非現実的なアーティファクトを含んでいる。
本稿では、任意のイメージネット分類器に対して、視覚拡散対実説明(DVCE)を生成することでこれを克服する。
論文 参考訳(メタデータ) (2022-10-21T09:35:47Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z) - Designing Counterfactual Generators using Deep Model Inversion [31.1607056675927]
本研究では,あるクエリー画像に対する反実的説明を生成するための深い逆変換手法を開発する。
視覚的に意味のある説明を生成することに加えて、disCの反事実は意思決定境界の学習に有効であり、未知のテストタイムの汚職に対して堅牢であることがわかった。
論文 参考訳(メタデータ) (2021-09-29T08:40:50Z) - Discrete Auto-regressive Variational Attention Models for Text Modeling [53.38382932162732]
変分オートエンコーダ(VAE)はテキストモデリングに広く応用されている。
情報不足と後部崩壊という2つの課題に悩まされている。
本稿では,自己回帰変動注意モデル(DAVAM)を提案する。
論文 参考訳(メタデータ) (2021-06-16T06:36:26Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
本稿では,新しいタイプの解釈可能な機械学習手法を提案する。
量子シフトを用いた分類モデルでは、特徴空間の予測クラスへの分割を理解するのに役立ちます。
基本的に、実際のデータポイント(または特定の関心点)を使用し、特定の特徴をわずかに引き上げたり減少させたりした後の予測の変化を観察する。
論文 参考訳(メタデータ) (2020-09-11T16:35:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。