Unlocking Efficient Long-to-Short LLM Reasoning with Model Merging
- URL: http://arxiv.org/abs/2503.20641v1
- Date: Wed, 26 Mar 2025 15:34:37 GMT
- Title: Unlocking Efficient Long-to-Short LLM Reasoning with Model Merging
- Authors: Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu, Xiongwei Han, Xing Li, Hui-Ling Zhen, Tao Zhong, Mingxuan Yuan,
- Abstract summary: Long-to-Short (L2S) reasoning aims to balance reasoning depth with practical efficiency.<n>Model merging offers a cost-effective and robust alternative by integrating the quick-thinking capabilities of System 1 models with the methodical reasoning of System 2 models.<n>Our experiments reveal that model merging can reduce average response length by up to 55% while preserving or even improving baseline performance.
- Score: 17.038807261969033
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The transition from System 1 to System 2 reasoning in large language models (LLMs) has marked significant advancements in handling complex tasks through deliberate, iterative thinking. However, this progress often comes at the cost of efficiency, as models tend to overthink, generating redundant reasoning steps without proportional improvements in output quality. Long-to-Short (L2S) reasoning has emerged as a promising solution to this challenge, aiming to balance reasoning depth with practical efficiency. While existing approaches, such as supervised fine-tuning (SFT), reinforcement learning (RL), and prompt engineering, have shown potential, they are either computationally expensive or unstable. Model merging, on the other hand, offers a cost-effective and robust alternative by integrating the quick-thinking capabilities of System 1 models with the methodical reasoning of System 2 models. In this work, we present a comprehensive empirical study on model merging for L2S reasoning, exploring diverse methodologies, including task-vector-based, SVD-based, and activation-informed merging. Our experiments reveal that model merging can reduce average response length by up to 55% while preserving or even improving baseline performance. We also identify a strong correlation between model scale and merging efficacy with extensive evaluations on 1.5B/7B/14B/32B models. Furthermore, we investigate the merged model's ability to self-critique and self-correct, as well as its adaptive response length based on task complexity. Our findings highlight model merging as a highly efficient and effective paradigm for L2S reasoning, offering a practical solution to the overthinking problem while maintaining the robustness of System 2 reasoning. This work can be found on Github https://github.com/hahahawu/Long-to-Short-via-Model-Merging.
Related papers
- a1: Steep Test-time Scaling Law via Environment Augmented Generation [45.19240207975418]
Environment Augmented Generation (EAG) is a framework that enhances large language models' reasoning through real-time environmental feedback.
EAG enables deliberate backtracking and strategic replanning through tight integration of execution feedback and branching exploration.
A1-32B model achieves state-of-the-art performance among similar-sized models across all benchmarks.
arXiv Detail & Related papers (2025-04-20T12:55:59Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.
Our framework incorporates two complementary strategies: internal TTC and external TTC.
We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - Reinforced Model Merging [53.84354455400038]
We present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks.
By utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times.
arXiv Detail & Related papers (2025-03-27T08:52:41Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.<n>Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving [90.88021670297664]
FINEREASON is a logic-puzzle benchmark for evaluation of large language models' reasoning capabilities.<n>We introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move.<n>We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.
arXiv Detail & Related papers (2025-02-27T16:23:25Z) - Reasoning on a Spectrum: Aligning LLMs to System 1 and System 2 Thinking [0.9709444454602557]
Large Language Models (LLMs) exhibit impressive reasoning abilities, yet their reliance on structured step-by-step reasoning reveals a critical limitation.<n>This work challenges the assumption that step-by-step reasoning is always optimal and highlights the need for adapting reasoning strategies based on task demands.
arXiv Detail & Related papers (2025-02-18T02:58:37Z) - Fine, I'll Merge It Myself: A Multi-Fidelity Framework for Automated Model Merging [30.38047100067552]
Reasoning capabilities represent a critical frontier for large language models.<n>One way to efficiently supplement capabilities with is by model merging.<n>We propose an Automated Model Merging Framework that enables fine-grained exploration of merging strategies.
arXiv Detail & Related papers (2025-02-06T12:47:25Z) - SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation [14.786100203787194]
Large language models demonstrate exceptional performance in simple code generation tasks but face challenges in tackling complex problems.
We propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths.
Our method operates entirely through the model itself without requiring additional supervision.
arXiv Detail & Related papers (2024-11-17T12:31:04Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.