Mitigating Low-Level Visual Hallucinations Requires Self-Awareness: Database, Model and Training Strategy
- URL: http://arxiv.org/abs/2503.20673v2
- Date: Thu, 27 Mar 2025 02:04:02 GMT
- Title: Mitigating Low-Level Visual Hallucinations Requires Self-Awareness: Database, Model and Training Strategy
- Authors: Yinan Sun, Xiongkuo Min, Zicheng Zhang, Yixuan Gao, Yuqin Cao, Guangtao Zhai,
- Abstract summary: We introduce the first instruction database specifically focused on hallucinations in low-level vision tasks.<n>We propose the Self-Awareness Failure Elimination (SAFEQA) model to improve the perception and comprehension abilities of the model in low-level vision tasks.<n>We conduct comprehensive experiments on low-level vision tasks, with the results demonstrating that our proposed method significantly enhances self-awareness of the model in these tasks and reduces hallucinations.
- Score: 53.07517728420411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of multimodal large language models has resulted in remarkable advancements in visual perception and understanding, consolidating several tasks into a single visual question-answering framework. However, these models are prone to hallucinations, which limit their reliability as artificial intelligence systems. While this issue is extensively researched in natural language processing and image captioning, there remains a lack of investigation of hallucinations in Low-level Visual Perception and Understanding (HLPU), especially in the context of image quality assessment tasks. We consider that these hallucinations arise from an absence of clear self-awareness within the models. To address this issue, we first introduce the HLPU instruction database, the first instruction database specifically focused on hallucinations in low-level vision tasks. This database contains approximately 200K question-answer pairs and comprises four subsets, each covering different types of instructions. Subsequently, we propose the Self-Awareness Failure Elimination (SAFEQA) model, which utilizes image features, salient region features and quality features to improve the perception and comprehension abilities of the model in low-level vision tasks. Furthermore, we propose the Enhancing Self-Awareness Preference Optimization (ESA-PO) framework to increase the model's awareness of knowledge boundaries, thereby mitigating the incidence of hallucination. Finally, we conduct comprehensive experiments on low-level vision tasks, with the results demonstrating that our proposed method significantly enhances self-awareness of the model in these tasks and reduces hallucinations. Notably, our proposed method improves both accuracy and self-awareness of the proposed model and outperforms close-source models in terms of various evaluation metrics.
Related papers
- PerturboLLaVA: Reducing Multimodal Hallucinations with Perturbative Visual Training [56.172959986096316]
This paper aims to address the challenge of hallucinations in Multimodal Large Language Models (MLLMs)<n>HalFscore is a novel metric built upon the language graph and is designed to evaluate both the accuracy and completeness of dense captions at a granular level.<n>PerturboLLaVA significantly improves the fidelity of generated captions, outperforming existing approaches in handling multimodal hallucinations.
arXiv Detail & Related papers (2025-03-09T07:07:03Z) - PAINT: Paying Attention to INformed Tokens to Mitigate Hallucination in Large Vision-Language Model [0.0]
hallucinations often arise from the progressive weakening of attention weight to visual tokens.<n>textbfPAINT (textbfPaying textbfAttention to textbfINformed textbfTokens) is a plug-and-play framework that intervenes in the self-attention mechanism of the Large Vision Language Models.
arXiv Detail & Related papers (2025-01-21T15:22:31Z) - Towards a Systematic Evaluation of Hallucinations in Large-Vision Language Models [57.58426038241812]
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance in complex multimodal tasks.<n>These models still suffer from hallucinations when required to implicitly recognize or infer diverse visual entities from images.<n>We propose a novel visual question answering (VQA) benchmark that employs contextual reasoning prompts as hallucination attacks.
arXiv Detail & Related papers (2024-12-29T23:56:01Z) - Explore the Hallucination on Low-level Perception for MLLMs [83.12180878559295]
We aim to define and evaluate the self-awareness of MLLMs in low-level visual perception and understanding tasks.
We present QL-Bench, a benchmark settings to simulate human responses to low-level vision.
We demonstrate that while some models exhibit robust low-level visual capabilities, their self-awareness remains relatively underdeveloped.
arXiv Detail & Related papers (2024-09-15T14:38:29Z) - Enhancing Large Vision Language Models with Self-Training on Image Comprehension [131.14381425260706]
We introduce Self-Training on Image (STIC), which emphasizes a self-training approach specifically for image comprehension.
First, the model self-constructs a preference for image descriptions using unlabeled images.
To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data.
arXiv Detail & Related papers (2024-05-30T05:53:49Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - IBD: Alleviating Hallucinations in Large Vision-Language Models via
Image-Biased Decoding [37.16880672402059]
Over-reliance on linguistic priors has been identified as a key factor leading to hallucinations.
We propose to alleviate this problem by introducing a novel image-biased decoding technique.
Our method derives the next-token probability distribution by contrasting predictions from a conventional LVLM with those of an image-biased LVLM.
arXiv Detail & Related papers (2024-02-28T16:57:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.