論文の概要: Benchmarking and optimizing organism wide single-cell RNA alignment methods
- arxiv url: http://arxiv.org/abs/2503.20730v1
- Date: Wed, 26 Mar 2025 17:11:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:18:08.827643
- Title: Benchmarking and optimizing organism wide single-cell RNA alignment methods
- Title(参考訳): 生物のワイドシングルセルRNAアライメント法のベンチマークと最適化
- Authors: Juan Javier Diaz-Mejia, Elias Williams, Octavian Focsa, Dylan Mendonca, Swechha Singh, Brendan Innes, Sam Cooper,
- Abstract要約: K-Neighbors Intersection (KNI) スコアは,バッチ効果をペナライズし,セル型ラベル予測の精度を計測する単一スコアである。
本稿では,逆算学習を用いて,エンコーダとデコーダのバッチ効果をペナルライズするScVIの新たな変種として,Batch Adversarial Single-cell Variational Inference (BA-scVI)を紹介した。
得られたアライメント空間では, 細胞型グルーピングの粒度が保存され, 情報を失うことなく, 有機体型マップを単一モデルで作成できるという概念が支持される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Many methods have been proposed for removing batch effects and aligning single-cell RNA (scRNA) datasets. However, performance is typically evaluated based on multiple parameters and few datasets, creating challenges in assessing which method is best for aligning data at scale. Here, we introduce the K-Neighbors Intersection (KNI) score, a single score that both penalizes batch effects and measures accuracy at cross-dataset cell-type label prediction alongside carefully curated small (scMARK) and large (scREF) benchmarks comprising 11 and 46 human scRNA studies respectively, where we have standardized author labels. Using the KNI score, we evaluate and optimize approaches for cross-dataset single-cell RNA integration. We introduce Batch Adversarial single-cell Variational Inference (BA-scVI), as a new variant of scVI that uses adversarial training to penalize batch-effects in the encoder and decoder, and show this approach outperforms other methods. In the resulting aligned space, we find that the granularity of cell-type groupings is conserved, supporting the notion that whole-organism cell-type maps can be created by a single model without loss of information.
- Abstract(参考訳): バッチ効果を除去し、シングルセルRNA(scRNA)データセットを調整するための多くの方法が提案されている。
しかし、通常、パフォーマンスは複数のパラメータと少数のデータセットに基づいて評価され、どのメソッドが大規模にデータを調整するのに最適であるかを評価する上での課題が生じる。
本稿では,K-Neighbors Intersection (KNI) スコアについて紹介する。K-Neighbors Intersection (KNI) スコアは,バッチ効果をペナルライズし,セルタイプラベル予測における精度を計測する。
KNIスコアを用いて、クロスデータセット単細胞RNA統合のためのアプローチを評価し、最適化する。
我々は,逆算学習を用いて,エンコーダとデコーダのバッチ効果をペナルライズするScVIの新たな変種として,Batch Adversarial Single-cell Variational Inference (BA-scVI)を導入し,本手法が他の手法よりも優れていることを示す。
その結果, 細胞型グルーピングの粒度は保存され, 情報を失うことなく, 単一モデルで組織型マップを作成できるという概念が支持された。
関連論文リスト
- scASDC: Attention Enhanced Structural Deep Clustering for Single-cell RNA-seq Data [5.234149080137045]
scRNA-seqデータに固有の高空間性および複雑なノイズパターンは、従来のクラスタリング手法において重要な課題である。
本稿では,深層クラスタリング手法であるアテンション強化構造深層埋め込みグラフクラスタリング(scASDC)を提案する。
scASDCはクラスタリングの精度と堅牢性を改善するために、複数の高度なモジュールを統合している。
論文 参考訳(メタデータ) (2024-08-09T09:10:36Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - scRNA-seq Data Clustering by Cluster-aware Iterative Contrastive
Learning [29.199004624757233]
単一細胞RNAシークエンシング(scRNA-seq)により、研究者は単一細胞レベルで遺伝子発現を解析できる。
scRNA-seqデータ分析における重要なタスクは、教師なしクラスタリングである。
我々は,cRNA-seqデータクラスタリングのためのクラスタ対応反復コントラスト学習(CICL)を提案する。
論文 参考訳(メタデータ) (2023-12-27T14:50:59Z) - Single-cell Multi-view Clustering via Community Detection with Unknown
Number of Clusters [64.31109141089598]
シングルセルデータに適した,革新的なマルチビュークラスタリング手法である scUNC を導入する。
scUNCは、事前に定義された数のクラスタを必要とせずに、異なるビューからの情報をシームレスに統合する。
3つの異なる単一セルデータセットを用いて,SCUNCの総合評価を行った。
論文 参考訳(メタデータ) (2023-11-28T08:34:58Z) - Analyzing scRNA-seq data by CCP-assisted UMAP and t-SNE [0.0]
相関クラスタリングとプロジェクション(CCP)は、cRNA-seqデータを前処理する有効な方法として導入された。
CCPは、行列対角化を必要としないデータドメインアプローチである。
8つの公開データセットを使用することで、CCPは UMAP と t-SNE の可視化を大幅に改善することがわかった。
論文 参考訳(メタデータ) (2023-06-23T19:15:43Z) - Efficient Approximate Kernel Based Spike Sequence Classification [56.2938724367661]
SVMのような機械学習モデルは、シーケンスのペア間の距離/相似性の定義を必要とする。
厳密な手法により分類性能は向上するが、計算コストが高い。
本稿では,その予測性能を向上させるために,近似カーネルの性能を改善する一連の方法を提案する。
論文 参考訳(メタデータ) (2022-09-11T22:44:19Z) - A systematic evaluation of methods for cell phenotype classification
using single-cell RNA sequencing data [7.62849213621469]
本研究は、細胞表現型を分類する13の一般的な教師付き機械学習アルゴリズムを評価する。
研究結果から、ElasticNetと対話は、中小のデータセットで最善を尽くしたことが示された。
論文 参考訳(メタデータ) (2021-10-01T23:24:15Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
異常検出(AD)は、製造から医療まで、さまざまな分野に応用されている。
本研究は、トレーニングデータ全体がラベル付けされておらず、正規サンプルと異常サンプルの両方を含む可能性のある、教師なしAD問題に焦点を当てる。
この問題に対処するため,データリファインメントによる堅牢な一級分類フレームワークを構築した。
本手法は6.3AUCと12.5AUCの平均精度で最先端の1クラス分類法より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-11T01:36:08Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
深層学習におけるデータ不均衡やラベルノイズ問題に対処するための証明可能な手法(ABSGD)を提案する。
本手法は運動量SGDの簡易な修正であり,各試料に個別の重み付けを行う。
ABSGDは追加コストなしで他の堅牢な損失と組み合わせられるほど柔軟である。
論文 参考訳(メタデータ) (2020-12-13T03:41:52Z) - Split and Expand: An inference-time improvement for Weakly Supervised
Cell Instance Segmentation [71.50526869670716]
本研究では,分割マップのインスタンスへの変換を改善するために,2段階の後処理手順であるSplitとExpandを提案する。
Splitのステップでは,セルの集合をセグメント化マップから個々のセルインスタンスに分割し,セル中心の予測を導出する。
拡張ステップでは、細胞中心予測を用いて、小さな細胞が欠落していることが分かる。
論文 参考訳(メタデータ) (2020-07-21T14:05:09Z) - Review of Single-cell RNA-seq Data Clustering for Cell Type
Identification and Characterization [12.655970720359297]
教師なし学習は、新しい細胞タイプと遺伝子発現パターンを識別し、特徴付ける中心的な要素となっている。
本稿では,既存の単一セルRNA-seqデータクラスタリング手法について概説する。
そこで本研究では,2つの単一セルRNA-seqクラスタリング手法の性能比較実験を行った。
論文 参考訳(メタデータ) (2020-01-03T22:48:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。