Synthetic Video Enhances Physical Fidelity in Video Synthesis
- URL: http://arxiv.org/abs/2503.20822v1
- Date: Wed, 26 Mar 2025 00:45:07 GMT
- Title: Synthetic Video Enhances Physical Fidelity in Video Synthesis
- Authors: Qi Zhao, Xingyu Ni, Ziyu Wang, Feng Cheng, Ziyan Yang, Lu Jiang, Bohan Wang,
- Abstract summary: We investigate how to enhance the physical fidelity of video generation models by leveraging synthetic videos derived from computer graphics pipelines.<n>We propose a solution that curates and integrates synthetic data while introducing a method to transfer its physical realism to the model.<n>Our work offers one of the first empirical demonstrations that synthetic video enhances physical fidelity in video synthesis.
- Score: 25.41774228022216
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We investigate how to enhance the physical fidelity of video generation models by leveraging synthetic videos derived from computer graphics pipelines. These rendered videos respect real-world physics, such as maintaining 3D consistency, and serve as a valuable resource that can potentially improve video generation models. To harness this potential, we propose a solution that curates and integrates synthetic data while introducing a method to transfer its physical realism to the model, significantly reducing unwanted artifacts. Through experiments on three representative tasks emphasizing physical consistency, we demonstrate its efficacy in enhancing physical fidelity. While our model still lacks a deep understanding of physics, our work offers one of the first empirical demonstrations that synthetic video enhances physical fidelity in video synthesis. Website: https://kevinz8866.github.io/simulation/
Related papers
- Morpheus: Benchmarking Physical Reasoning of Video Generative Models with Real Physical Experiments [55.465371691714296]
We introduce Morpheus, a benchmark for evaluating video generation models on physical reasoning.
It features 80 real-world videos capturing physical phenomena, guided by conservation laws.
Our findings reveal that even with advanced prompting and video conditioning, current models struggle to encode physical principles.
arXiv Detail & Related papers (2025-04-03T15:21:17Z) - VideoPhy-2: A Challenging Action-Centric Physical Commonsense Evaluation in Video Generation [66.58048825989239]
VideoPhy-2 is an action-centric dataset for evaluating physical commonsense in generated videos.<n>We perform human evaluation that assesses semantic adherence, physical commonsense, and grounding of physical rules in the generated videos.<n>Our findings reveal major shortcomings, with even the best model achieving only 22% joint performance.
arXiv Detail & Related papers (2025-03-09T22:49:12Z) - PhysGen: Rigid-Body Physics-Grounded Image-to-Video Generation [29.831214435147583]
We present PhysGen, a novel image-to-video generation method.
It produces a realistic, physically plausible, and temporally consistent video.
Our key insight is to integrate model-based physical simulation with a data-driven video generation process.
arXiv Detail & Related papers (2024-09-27T17:59:57Z) - Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
We propose textbfPhysics3D, a novel method for learning various physical properties of 3D objects through a video diffusion model.
Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model.
Experiments demonstrate the effectiveness of our method with both elastic and plastic materials.
arXiv Detail & Related papers (2024-06-06T17:59:47Z) - VideoPhy: Evaluating Physical Commonsense for Video Generation [93.28748850301949]
We present VideoPhy, a benchmark designed to assess whether the generated videos follow physical commonsense for real-world activities.
We then generate videos conditioned on captions from diverse state-of-the-art text-to-video generative models.
Our human evaluation reveals that the existing models severely lack the ability to generate videos adhering to the given text prompts.
arXiv Detail & Related papers (2024-06-05T17:53:55Z) - DreamPhysics: Learning Physics-Based 3D Dynamics with Video Diffusion Priors [75.83647027123119]
We propose to learn the physical properties of a material field with video diffusion priors.<n>We then utilize a physics-based Material-Point-Method simulator to generate 4D content with realistic motions.
arXiv Detail & Related papers (2024-06-03T16:05:25Z) - PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation [62.53760963292465]
PhysDreamer is a physics-based approach that endows static 3D objects with interactive dynamics.
We present our approach on diverse examples of elastic objects and evaluate the realism of the synthesized interactions through a user study.
arXiv Detail & Related papers (2024-04-19T17:41:05Z) - Physics-Driven Diffusion Models for Impact Sound Synthesis from Videos [78.49864987061689]
Traditional methods of impact sound synthesis use physics simulation to obtain a set of physics parameters that could represent and synthesize the sound.
Existing video-driven deep learning-based approaches could only capture the weak correspondence between visual content and impact sounds.
We propose a physics-driven diffusion model that can synthesize high-fidelity impact sound for a silent video clip.
arXiv Detail & Related papers (2023-03-29T17:59:53Z) - Differentiable Dynamics for Articulated 3d Human Motion Reconstruction [29.683633237503116]
We introduce DiffPhy, a differentiable physics-based model for articulated 3d human motion reconstruction from video.
We validate the model by demonstrating that it can accurately reconstruct physically plausible 3d human motion from monocular video.
arXiv Detail & Related papers (2022-05-24T17:58:37Z) - Dynamic Visual Reasoning by Learning Differentiable Physics Models from
Video and Language [92.7638697243969]
We propose a unified framework that can jointly learn visual concepts and infer physics models of objects from videos and language.
This is achieved by seamlessly integrating three components: a visual perception module, a concept learner, and a differentiable physics engine.
arXiv Detail & Related papers (2021-10-28T17:59:13Z) - Physics-based Human Motion Estimation and Synthesis from Videos [0.0]
We propose a framework for training generative models of physically plausible human motion directly from monocular RGB videos.
At the core of our method is a novel optimization formulation that corrects imperfect image-based pose estimations.
Results show that our physically-corrected motions significantly outperform prior work on pose estimation.
arXiv Detail & Related papers (2021-09-21T01:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.