Anti Robot Speciesism
- URL: http://arxiv.org/abs/2503.20842v1
- Date: Wed, 26 Mar 2025 13:56:30 GMT
- Title: Anti Robot Speciesism
- Authors: Julian De Freitas, Noah Castelo, Bernd Schmitt, Miklos Sarvary,
- Abstract summary: We find a tendency to deny humanoids humanlike capabilities, driven by motivations to accord members of the human species preferential treatment.<n>Six experiments show that robots are denied humanlike attributes, simply because they are not biological beings.<n>People do not rationally attribute capabilities to perfectly humanlike robots but deny them capabilities as it suits them.
- Score: 0.5699788926464752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humanoid robots are a form of embodied artificial intelligence (AI) that looks and acts more and more like humans. Powered by generative AI and advances in robotics, humanoid robots can speak and interact with humans rather naturally but are still easily recognizable as robots. But how will we treat humanoids when they seem indistinguishable from humans in appearance and mind? We find a tendency (called "anti-robot" speciesism) to deny such robots humanlike capabilities, driven by motivations to accord members of the human species preferential treatment. Six experiments show that robots are denied humanlike attributes, simply because they are not biological beings and because humans want to avoid feelings of cognitive dissonance when utilizing such robots for unsavory tasks. Thus, people do not rationally attribute capabilities to perfectly humanlike robots but deny them capabilities as it suits them.
Related papers
- HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
We develop methods for training policies for socially unobtrusive navigation.
By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space.
We collect a large dataset where an indoor mobile robot interacts with human bystanders.
arXiv Detail & Related papers (2023-06-02T19:07:52Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
This work investigates the perception of object manipulations performed with a communicative intent by two robots.
We designed the robots' movements to communicate carefulness or not during the transportation of objects.
arXiv Detail & Related papers (2022-08-03T13:26:52Z) - Explain yourself! Effects of Explanations in Human-Robot Interaction [10.389325878657697]
Explanations of robot decisions could affect user perceptions, justify their reliability, and increase trust.
The effects on human perceptions of robots that explain their decisions have not been studied thoroughly.
This study demonstrates the need for and potential of explainable human-robot interaction.
arXiv Detail & Related papers (2022-04-09T15:54:27Z) - Robotic Telekinesis: Learning a Robotic Hand Imitator by Watching Humans
on Youtube [24.530131506065164]
We build a system that enables any human to control a robot hand and arm, simply by demonstrating motions with their own hand.
The robot observes the human operator via a single RGB camera and imitates their actions in real-time.
We leverage this data to train a system that understands human hands and retargets a human video stream into a robot hand-arm trajectory that is smooth, swift, safe, and semantically similar to the guiding demonstration.
arXiv Detail & Related papers (2022-02-21T18:59:59Z) - Dynamically Switching Human Prediction Models for Efficient Planning [32.180808286226075]
We give the robot access to a suite of human models and enable it to assess the performance-computation trade-off online.
Our experiments in a driving simulator showcase how the robot can achieve performance comparable to always using the best human model.
arXiv Detail & Related papers (2021-03-13T23:48:09Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
We propose an approach for human-to-robot handovers in which the robot meets the human halfway.
We collect a human grasp dataset which covers typical ways of holding objects with various hand shapes and poses.
We present a planning and execution approach that takes the object from the human hand according to the detected grasp and hand position.
arXiv Detail & Related papers (2020-03-12T19:58:03Z) - Robot Rights? Let's Talk about Human Welfare Instead [0.0]
We argue that robots, as artifacts emerging out of and mediating human being, are the kinds of things that could be granted rights in the first place.
We conclude that, if human being is our starting point and human welfare is the primary concern, the negative impacts emerging from machinic systems remain the most pressing ethical discussion in AI.
arXiv Detail & Related papers (2020-01-14T20:54:29Z) - A Survey of Behavior Learning Applications in Robotics -- State of the Art and Perspectives [44.45953630612019]
Recent success of machine learning in many domains has been overwhelming.
We will give a broad overview of behaviors that have been learned and used on real robots.
arXiv Detail & Related papers (2019-06-05T07:54:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.