A Survey of Behavior Learning Applications in Robotics -- State of the Art and Perspectives
- URL: http://arxiv.org/abs/1906.01868v3
- Date: Thu, 12 Sep 2024 12:00:26 GMT
- Title: A Survey of Behavior Learning Applications in Robotics -- State of the Art and Perspectives
- Authors: Alexander Fabisch, Christoph Petzoldt, Marc Otto, Frank Kirchner,
- Abstract summary: Recent success of machine learning in many domains has been overwhelming.
We will give a broad overview of behaviors that have been learned and used on real robots.
- Score: 44.45953630612019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent success of machine learning in many domains has been overwhelming, which often leads to false expectations regarding the capabilities of behavior learning in robotics. In this survey, we analyze the current state of machine learning for robotic behaviors. We will give a broad overview of behaviors that have been learned and used on real robots. Our focus is on kinematically or sensorially complex robots. That includes humanoid robots or parts of humanoid robots, for example, legged robots or robotic arms. We will classify presented behaviors according to various categories and we will draw conclusions about what can be learned and what should be learned. Furthermore, we will give an outlook on problems that are challenging today but might be solved by machine learning in the future and argue that classical robotics and other approaches from artificial intelligence should be integrated more with machine learning to form complete, autonomous systems.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - Teach Me How to Learn: A Perspective Review towards User-centered
Neuro-symbolic Learning for Robotic Surgical Systems [3.5672486441844553]
Recent advances in machine learning allowed robots to identify objects on a perceptual nonsymbolic level.
An alternative solution is to teach a robot on both perceptual nonsymbolic and conceptual symbolic levels.
This work proposes a concept for this user-centered hybrid learning paradigm that focuses on robotic surgical situations.
arXiv Detail & Related papers (2023-07-07T21:58:28Z) - Exploring the effects of robotic design on learning and neural control [0.0]
dissertation focuses on the development of robotic bodies, rather than neural controllers.
I have discovered that robots can be designed such that they overcome many of the current pitfalls encountered by neural controllers in multitask settings.
arXiv Detail & Related papers (2023-06-06T15:17:34Z) - DayDreamer: World Models for Physical Robot Learning [142.11031132529524]
Deep reinforcement learning is a common approach to robot learning but requires a large amount of trial and error to learn.
Many advances in robot learning rely on simulators.
In this paper, we apply Dreamer to 4 robots to learn online and directly in the real world, without simulators.
arXiv Detail & Related papers (2022-06-28T17:44:48Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Neuroscience-inspired perception-action in robotics: applying active
inference for state estimation, control and self-perception [2.1067139116005595]
We discuss how neuroscience findings open up opportunities to improve current estimation and control algorithms in robotics.
This paper summarizes some experiments and lessons learned from developing such a computational model on real embodied platforms.
arXiv Detail & Related papers (2021-05-10T10:59:38Z) - Continual Learning of Visual Concepts for Robots through Limited
Supervision [9.89901717499058]
My research focuses on developing robots that continually learn in dynamic unseen environments/scenarios.
I develop machine learning models that produce State-of-the-results on benchmark datasets.
arXiv Detail & Related papers (2021-01-26T01:26:07Z) - Learning Locomotion Skills in Evolvable Robots [10.167123492952694]
We introduce a controller architecture and a generic learning method to allow a modular robot with an arbitrary shape to learn to walk towards a target and follow this target if it moves.
Our approach is validated on three robots, a spider, a gecko, and their offspring, in three real-world scenarios.
arXiv Detail & Related papers (2020-10-19T14:01:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.