Stabilizer Entanglement as a Magic Highway
- URL: http://arxiv.org/abs/2503.20873v2
- Date: Fri, 11 Apr 2025 14:20:23 GMT
- Title: Stabilizer Entanglement as a Magic Highway
- Authors: Zong-Yue Hou, ChunJun Cao, Zhi-Cheng Yang,
- Abstract summary: We show that stabilizer entanglement functions as a highway that facilitates the spreading of locally injected magic.<n>We extend our analysis to non-stabilizer entanglement and magic injection via a shallow-depth brickwork circuit.
- Score: 4.9783914631370285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-stabilizerness is a key resource for fault-tolerant quantum computation, yet its interplay with entanglement in dynamical settings remains underexplored. We study a well-controlled, analytically tractable setup that isolates entanglement generation from magic injection. We analytically and numerically demonstrate that stabilizer entanglement functions as a highway that facilitates the spreading of locally injected magic throughout the entire system. Specifically, for an initial stabilizer state with bipartite entanglement $E$, the total magic growth, quantified by the linear stabilizer entropy $Y$, follows $\overline{Y}\propto 2^{-|A|-E}$ under a Haar random unitary on a local subregion $A$. Moreover, when applying a tensor product of local Haar random unitaries, the resulting state's global magic approaches that of a genuine Haar random state if the initial stabilizer state is sufficiently entangled by a system-size-independent amount. Similar results are also obtained for tripartite stabilizer entanglement. We further extend our analysis to non-stabilizer entanglement and magic injection via a shallow-depth brickwork circuit, and find that the qualitative picture of our conclusion remains unchanged.
Related papers
- Non-stabilizerness of Neural Quantum States [41.94295877935867]
We introduce a methodology to estimate non-stabilizerness or "magic", a key resource for quantum complexity, with Neural Quantum States (NQS)<n>We study the magic content in an ensemble of random NQS, demonstrating that neural network parametrizations of the wave function capture finite non-stabilizerness besides large entanglement.
arXiv Detail & Related papers (2025-02-13T19:14:15Z) - Magic spreading in random quantum circuits [0.0]
We show how rapidly do generic many-body dynamics generate magic resources under the constraints of locality and unitarity.<n>We demonstrate that magic resources equilibrate on timescales logarithmic in the system size, akin to anti-concentration and Hilbert space delocalization phenomena.<n>As random circuits are minimal models for chaotic dynamics, we conjecture that our findings describe the phenomenology of magic resources growth in a broad class of chaotic many-body systems.
arXiv Detail & Related papers (2024-07-04T13:43:46Z) - Nonstabilizerness via matrix product states in the Pauli basis [0.0]
We present a novel approach for the evaluation of nonstabilizerness within the framework of matrix product states (MPS)
Our framework provides a powerful tool for efficiently calculating various measures of nonstabilizerness, including stabilizer R'enyi entropies, stabilizer nullity, and Bell magic.
We showcase the efficacy and versatility of our method in the ground states of Ising and XXZ spin chains, as well as in circuits dynamics that has recently been realized in Rydberg atom arrays.
arXiv Detail & Related papers (2024-01-29T19:12:10Z) - Learning the stabilizer group of a Matrix Product State [0.0]
We present a novel classical algorithm designed to learn the stabilizer group of a given Matrix Product State (MPS)
We benchmark our method on $T$-doped states randomly scrambled via Clifford unitary dynamics.
Our method, thanks to a very favourable scaling $mathcalO(chi3)$, represents the first effective approach to obtain a genuine magic monotone for MPS.
arXiv Detail & Related papers (2024-01-29T19:00:13Z) - Critical behaviors of non-stabilizerness in quantum spin chains [0.0]
Non-stabilizerness measures the extent to which a quantum state deviates from stabilizer states.
In this work, we investigate the behavior of non-stabilizerness around criticality in quantum spin chains.
arXiv Detail & Related papers (2023-09-01T18:00:04Z) - Magic-state resource theory for the ground state of the transverse-field
Ising model [0.0]
We study the behavior of the stabilizer R'enyi entropy in the integrable transverse field Ising spin chain.
We show that the locality of interactions results in a localized stabilizer R'enyi entropy in the gapped phase.
arXiv Detail & Related papers (2022-05-04T18:00:03Z) - Improved Graph Formalism for Quantum Circuit Simulation [77.34726150561087]
We show how to efficiently simplify stabilizer states to canonical form.
We characterize all linearly dependent triplets, revealing symmetries in the inner products.
Using our novel controlled-Pauli $Z$ algorithm, we improve runtime for inner product computation from $O(n3)$ to $O(nd2)$ where $d$ is the maximum degree of the graph.
arXiv Detail & Related papers (2021-09-20T05:56:25Z) - Robust Online Control with Model Misspecification [96.23493624553998]
We study online control of an unknown nonlinear dynamical system with model misspecification.
Our study focuses on robustness, which measures how much deviation from the assumed linear approximation can be tolerated.
arXiv Detail & Related papers (2021-07-16T07:04:35Z) - Learning Stabilizing Controllers for Unstable Linear Quadratic
Regulators from a Single Trajectory [85.29718245299341]
We study linear controllers under quadratic costs model also known as linear quadratic regulators (LQR)
We present two different semi-definite programs (SDP) which results in a controller that stabilizes all systems within an ellipsoid uncertainty set.
We propose an efficient data dependent algorithm -- textsceXploration -- that with high probability quickly identifies a stabilizing controller.
arXiv Detail & Related papers (2020-06-19T08:58:57Z) - Fine-Grained Analysis of Stability and Generalization for Stochastic
Gradient Descent [55.85456985750134]
We introduce a new stability measure called on-average model stability, for which we develop novel bounds controlled by the risks of SGD iterates.
This yields generalization bounds depending on the behavior of the best model, and leads to the first-ever-known fast bounds in the low-noise setting.
To our best knowledge, this gives the firstever-known stability and generalization for SGD with even non-differentiable loss functions.
arXiv Detail & Related papers (2020-06-15T06:30:19Z) - Sparse Identification of Nonlinear Dynamical Systems via Reweighted
$\ell_1$-regularized Least Squares [62.997667081978825]
This work proposes an iterative sparse-regularized regression method to recover governing equations of nonlinear systems from noisy state measurements.
The aim of this work is to improve the accuracy and robustness of the method in the presence of state measurement noise.
arXiv Detail & Related papers (2020-05-27T08:30:15Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.