Critical behaviors of non-stabilizerness in quantum spin chains
- URL: http://arxiv.org/abs/2309.00676v3
- Date: Sun, 14 Jul 2024 12:10:25 GMT
- Title: Critical behaviors of non-stabilizerness in quantum spin chains
- Authors: Poetri Sonya Tarabunga,
- Abstract summary: Non-stabilizerness measures the extent to which a quantum state deviates from stabilizer states.
In this work, we investigate the behavior of non-stabilizerness around criticality in quantum spin chains.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-stabilizerness - commonly known as magic - measures the extent to which a quantum state deviates from stabilizer states and is a fundamental resource for achieving universal quantum computation. In this work, we investigate the behavior of non-stabilizerness around criticality in quantum spin chains. To quantify non-stabilizerness, we employ a monotone called mana, based on the negativity of the discrete Wigner function. This measure captures non-stabilizerness for both pure and mixed states. We introduce R\'enyi generalizations of mana, which are also measures of non-stabilizerness for pure states, and utilize it to compute mana in large quantum systems. We consider the three-state Potts model and its non-integrable extension and we provide strong evidence that the mutual mana exhibits universal logarithmic scaling with distance in conformal field theory, as is the case for entanglement.
Related papers
- Non-stabilizerness in kinetically-constrained Rydberg atom arrays [0.11060425537315084]
We show that Rydberg atom arrays provide a natural reservoir of non-stabilizerness that extends beyond single qubits.
We explain the origin of Rydberg nonstabilizerness via a quantum circuit decomposition of the wave function.
arXiv Detail & Related papers (2024-06-20T14:17:34Z) - Extremality of stabilizer states [0.0]
We investigate the extremality of stabilizer states to reveal their exceptional role in the space of all $n$-qubit/qudit states.
Our results highlight the remarkable information-theoretic properties of stabilizer states.
arXiv Detail & Related papers (2024-03-20T14:30:59Z) - Measuring nonstabilizerness via multifractal flatness [0.0]
Universal quantum computing requires nonstabilizer (magic) quantum states.
We prove that a quantum state is a stabilizer if and only if all states belonging to its Clifford orbit have a flat probability distribution.
We show that the multifractal flatness provides an experimentally and computationally viable nonstabilizerness certification.
arXiv Detail & Related papers (2023-05-19T16:32:59Z) - Quantifying non-stabilizerness through entanglement spectrum flatness [0.0]
We establish a direct connection between non-stabilizerness and entanglement spectrum flatness for a pure quantum state.
We show that this connection can be exploited to efficiently probe non-stabilizerness even in presence of noise.
Our results reveal a direct connection between non-stabilizerness and entanglement response, and define a clear experimental protocol to probe non-stabilizerness in cold atom and solid-state platforms.
arXiv Detail & Related papers (2023-04-03T17:44:37Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Unconventional mechanism of virtual-state population through dissipation [125.99533416395765]
We report a phenomenon occurring in open quantum systems by which virtual states can acquire a sizable population in the long time limit.
This means that the situation where the virtual state remains unpopulated can be metastable.
We show how these results can be relevant for practical questions such as the generation of stable and metastable entangled states in dissipative systems of interacting qubits.
arXiv Detail & Related papers (2022-02-24T17:09:43Z) - Stabilizer R\'enyi entropy [0.0]
We introduce a novel measure for the quantum property of nonstabilizerness - commonly known as "magic"
We show that this is a good measure of nonstabilizerness from the point of view of resource theory and show bounds with other known measures.
We show that the nonstabilizerness is intimately connected to out-of-time-order correlation functions and that maximal levels of nonstabilizerness are necessary for quantum chaos.
arXiv Detail & Related papers (2021-06-23T18:00:02Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Toward Better Generalization Bounds with Locally Elastic Stability [41.7030651617752]
We argue that locally elastic stability implies tighter generalization bounds than those derived based on uniform stability.
We revisit the examples of bounded support vector machines, regularized least square regressions, and gradient descent.
arXiv Detail & Related papers (2020-10-27T02:04:53Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.