BioX-CPath: Biologically-driven Explainable Diagnostics for Multistain IHC Computational Pathology
- URL: http://arxiv.org/abs/2503.20880v2
- Date: Thu, 03 Apr 2025 17:47:49 GMT
- Title: BioX-CPath: Biologically-driven Explainable Diagnostics for Multistain IHC Computational Pathology
- Authors: Amaya Gallagher-Syed, Henry Senior, Omnia Alwazzan, Elena Pontarini, Michele Bombardieri, Costantino Pitzalis, Myles J. Lewis, Michael R. Barnes, Luca Rossi, Gregory Slabaugh,
- Abstract summary: BioX-CPath is an explainable graph neural network architecture for whole slide image (WSI) classification.<n>At its core, BioX-CPath introduces a novel Stain-Aware Attention Pooling (SAAP) module that generates biologically meaningful, stain-aware patient embeddings.
- Score: 0.9603373981832565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of biologically interpretable and explainable models remains a key challenge in computational pathology, particularly for multistain immunohistochemistry (IHC) analysis. We present BioX-CPath, an explainable graph neural network architecture for whole slide image (WSI) classification that leverages both spatial and semantic features across multiple stains. At its core, BioX-CPath introduces a novel Stain-Aware Attention Pooling (SAAP) module that generates biologically meaningful, stain-aware patient embeddings. Our approach achieves state-of-the-art performance on both Rheumatoid Arthritis and Sjogren's Disease multistain datasets. Beyond performance metrics, BioX-CPath provides interpretable insights through stain attention scores, entropy measures, and stain interaction scores, that permit measuring model alignment with known pathological mechanisms. This biological grounding, combined with strong classification performance, makes BioX-CPath particularly suitable for clinical applications where interpretability is key. Source code and documentation can be found at: https://github.com/AmayaGS/BioX-CPath.
Related papers
- From Pixels to Histopathology: A Graph-Based Framework for Interpretable Whole Slide Image Analysis [81.19923502845441]
We develop a graph-based framework that constructs WSI graph representations.<n>We build tissue representations (nodes) that follow biological boundaries rather than arbitrary patches.<n>In our method's final step, we solve the diagnostic task through a graph attention network.
arXiv Detail & Related papers (2025-03-14T20:15:04Z) - Leveraging Vision-Language Embeddings for Zero-Shot Learning in Histopathology Images [7.048241543461529]
We propose a novel framework called Multi-Resolution Prompt-guided Hybrid Embedding (MR-PHE) to address these challenges in zero-shot histopathology image classification.<n>We introduce a hybrid embedding strategy that integrates global image embeddings with weighted patch embeddings.<n>A similarity-based patch weighting mechanism assigns attention-like weights to patches based on their relevance to class embeddings.
arXiv Detail & Related papers (2025-03-13T12:18:37Z) - ExPath: Towards Explaining Targeted Pathways for Biological Knowledge Bases [36.89299758497499]
We propose a novel pathway inference framework, ExPath, to classify various graphs (bio-networks) in biological databases.<n>ExPath comprises three components: (1) a large protein language model (pLM) that encodes and embeds AA-seqs into graph, overcoming traditional obstacles in processing AA-seq data; (2) PathMamba, a hybrid architecture combining graph neural networks (GNNs) with state-space sequence modeling (Mamba) to capture both local interactions and global pathway-level dependencies; and (3) PathExplainer, a subgraph learning module that identifies functionally critical nodes and edges through train
arXiv Detail & Related papers (2025-02-25T09:33:15Z) - BioMaze: Benchmarking and Enhancing Large Language Models for Biological Pathway Reasoning [49.487327661584686]
We introduce BioMaze, a dataset with 5.1K complex pathway problems from real research.<n>Our evaluation of methods such as CoT and graph-augmented reasoning, shows that LLMs struggle with pathway reasoning.<n>To address this, we propose PathSeeker, an LLM agent that enhances reasoning through interactive subgraph-based navigation.
arXiv Detail & Related papers (2025-02-23T17:38:10Z) - From Whole-slide Image to Biomarker Prediction: A Protocol for
End-to-End Deep Learning in Computational Pathology [0.725241982525598]
This protocol describes a practical workflow for solid tumor associative modeling in pathology (STAMP)
The STAMP workflow is biomarker agnostic and allows for genetic- and clinicopathologic tabular data to be included as an additional input.
The protocol consists of five main stages which have been successfully applied to various research problems.
arXiv Detail & Related papers (2023-12-18T05:46:57Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
We propose a novel graph-based framework to leverage the inter-relationships among different types of nuclei for WSI analysis.
Specifically, we formulate the WSI as a heterogeneous graph with "nucleus-type" attribute to each node and a semantic attribute similarity to each edge.
Our framework outperforms the state-of-the-art methods with considerable margins on various tasks.
arXiv Detail & Related papers (2023-07-09T14:43:40Z) - Modeling Dense Multimodal Interactions Between Biological Pathways and Histology for Survival Prediction [3.2274401541163322]
We propose a memory-efficient multimodal Transformer that can model interactions between pathway and histology patch tokens.
Our proposed model, SURVPATH, achieves state-of-the-art performance when evaluated against both unimodal and multimodal baselines.
arXiv Detail & Related papers (2023-04-13T21:02:32Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - A Biologically Interpretable Two-stage Deep Neural Network (BIT-DNN) For
Vegetation Recognition From Hyperspectral Imagery [3.708283803668841]
This study proposes a novel interpretable deep learning model -- a biologically interpretable two-stage deep neural network (BIT-DNN)
The proposed model has been compared with five state-of-the-art deep learning models.
arXiv Detail & Related papers (2020-04-19T15:58:19Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.