Assessing Generative Models for Structured Data
- URL: http://arxiv.org/abs/2503.20903v1
- Date: Wed, 26 Mar 2025 18:19:05 GMT
- Title: Assessing Generative Models for Structured Data
- Authors: Reilly Cannon, Nicolette M. Laird, Caesar Vazquez, Andy Lin, Amy Wagler, Tony Chiang,
- Abstract summary: This paper introduces rigorous methods for assessing synthetic data against real data by looking at inter-column dependencies within the data.<n>We find that large language models (GPT-2), both when queried via few-shot prompting, and when fine-tuned, and GAN (CTGAN) models do not produce data with dependencies that mirror the original real data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthetic tabular data generation has emerged as a promising method to address limited data availability and privacy concerns. With the sharp increase in the performance of large language models in recent years, researchers have been interested in applying these models to the generation of tabular data. However, little is known about the quality of the generated tabular data from large language models. The predominant method for assessing the quality of synthetic tabular data is the train-synthetic-test-real approach, where the artificial examples are compared to the original by how well machine learning models, trained separately on the real and synthetic sets, perform in some downstream tasks. This method does not directly measure how closely the distribution of generated data approximates that of the original. This paper introduces rigorous methods for directly assessing synthetic tabular data against real data by looking at inter-column dependencies within the data. We find that large language models (GPT-2), both when queried via few-shot prompting and when fine-tuned, and GAN (CTGAN) models do not produce data with dependencies that mirror the original real data. Results from this study can inform future practice in synthetic data generation to improve data quality.
Related papers
- Scaling Laws of Synthetic Data for Language Models [132.67350443447611]
We introduce SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets.
Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm.
arXiv Detail & Related papers (2025-03-25T11:07:12Z) - Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
This paper introduces a novel approach that leverages three generative models of varying complexity to synthesize Malicious Network Traffic.
Our approach transforms numerical data into text, re-framing data generation as a language modeling task.
Our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data.
arXiv Detail & Related papers (2024-11-04T09:51:10Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - Boosting Data Analytics With Synthetic Volume Expansion [3.568650932986342]
This article explores the effectiveness of statistical methods on synthetic data and the privacy risks of synthetic data.
A key finding within this framework is the generational effect, which reveals that the error rate of statistical methods on synthetic data decreases with the addition of more synthetic data but may eventually rise or stabilize.
arXiv Detail & Related papers (2023-10-27T01:57:27Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models [69.76066070227452]
*Data Synthesis* is a promising way to train a small model with very little labeled data.
We propose *Synthesis Step by Step* (**S3**), a data synthesis framework that shrinks this distribution gap.
Our approach improves the performance of a small model by reducing the gap between the synthetic dataset and the real data.
arXiv Detail & Related papers (2023-10-20T17:14:25Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
We study the impact of training generative models on mixed datasets.
We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough.
We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-09-30T16:41:04Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Language Models are Realistic Tabular Data Generators [15.851912974874116]
We propose GReaT (Generation of Realistic Tabular data), which exploits an auto-regressive generative large language model (LLMs) to sample synthetic and yet highly realistic data.
We demonstrate the effectiveness of the proposed approach in a series of experiments that quantify the validity and quality of the produced data samples from multiple angles.
arXiv Detail & Related papers (2022-10-12T15:03:28Z) - Causal-TGAN: Generating Tabular Data Using Causal Generative Adversarial
Networks [7.232789848964222]
We propose a causal model named Causal Tabular Generative Neural Network (Causal-TGAN) to generate synthetic data.
Experiments on both simulated datasets and real datasets demonstrate the better performance of our method.
arXiv Detail & Related papers (2021-04-21T17:59:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.