論文の概要: Can Large Language Models Predict Associations Among Human Attitudes?
- arxiv url: http://arxiv.org/abs/2503.21011v1
- Date: Wed, 26 Mar 2025 21:58:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:54:42.996971
- Title: Can Large Language Models Predict Associations Among Human Attitudes?
- Title(参考訳): 大規模言語モデルは人的態度の関連を予測できるか?
- Authors: Ana Ma, Derek Powell,
- Abstract要約: 大規模言語モデル(LLM)は他の態度に基づいて人間の態度を予測することができることを示す。
多様な態度文に対する人間の反応の新たなデータセットを用いて,フロンティア言語モデル(GPT-4o)が個々の態度の相互相関を再現できることを発見した。
先行研究の進歩として,姿勢の相似性の欠如を予測できるGPT-4oの能力を検証した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Prior work has shown that large language models (LLMs) can predict human attitudes based on other attitudes, but this work has largely focused on predictions from highly similar and interrelated attitudes. In contrast, human attitudes are often strongly associated even across disparate and dissimilar topics. Using a novel dataset of human responses toward diverse attitude statements, we found that a frontier language model (GPT-4o) was able to recreate the pairwise correlations among individual attitudes and to predict individuals' attitudes from one another. Crucially, in an advance over prior work, we tested GPT-4o's ability to predict in the absence of surface-similarity between attitudes, finding that while surface similarity improves prediction accuracy, the model was still highly-capable of generating meaningful social inferences between dissimilar attitudes. Altogether, our findings indicate that LLMs capture crucial aspects of the deeper, latent structure of human belief systems.
- Abstract(参考訳): 以前の研究は、大きな言語モデル(LLM)が他の態度に基づいて人間の態度を予測できることを示してきたが、この研究は、非常に類似した相互関係の態度から予測することに集中していた。
対照的に、人間の態度は異質な話題や異質な話題にも強く結びついていることが多い。
多様な態度文に対する人間の反応の新たなデータセットを用いて、フロンティア言語モデル(GPT-4o)が、個人の態度の相互相関を再現し、個人の態度を相互に予測できることを発見した。
本研究は,先行研究に先立って,表層類似性の欠如を予測できるGPT-4oの有効性を検証した結果,表層類似性は予測精度を向上するが,表層類似性は相違する態度間の有意義な社会的推論を生み出すことが可能であることがわかった。
以上の結果から, LLMは人間の信念体系のより深い, 潜伏的な構造において重要な側面を捉えていることが示唆された。
関連論文リスト
- Multi-turn Evaluation of Anthropomorphic Behaviours in Large Language Models [26.333097337393685]
ユーザーが大きな言語モデル(LLM)を人為的に形作る傾向は、AI開発者、研究者、政策立案者への関心が高まっている。
本稿では,現実的かつ多様な環境下での人為的 LLM の挙動を実証的に評価する手法を提案する。
まず,14の人為的行動のマルチターン評価を開発する。
次に,ユーザインタラクションのシミュレーションを用いて,スケーラブルで自動化されたアプローチを提案する。
第3に,対話型大規模人体調査(N=1101)を実施し,実際のユーザの人文的知覚を予測するモデル行動を検証する。
論文 参考訳(メタデータ) (2025-02-10T22:09:57Z) - The Devil is in the Neurons: Interpreting and Mitigating Social Biases in Pre-trained Language Models [78.69526166193236]
プレトレーニング言語モデル(PLM)は、社会的バイアスのような有害な情報を含むことが認識されている。
我々は,社会バイアスなどの望ましくない行動に起因する言語モデルにおいて,正確に単位(すなわちニューロン)を特定するために,sc Social Bias Neuronsを提案する。
StereoSetの以前の測定値からわかるように、我々のモデルは、低コストで言語モデリング能力を維持しながら、より高い公平性を達成する。
論文 参考訳(メタデータ) (2024-06-14T15:41:06Z) - Large Language Models Can Infer Personality from Free-Form User Interactions [0.0]
GPT-4は、パーソナリティを適度な精度で推測することができ、以前のアプローチよりも優れていた。
その結果,人格評価への直接的注力は,ユーザエクスペリエンスの低下を招いていないことがわかった。
予備的な分析は、人格推定の正確さは、社会デミノグラフィーのサブグループによってわずかに異なることを示唆している。
論文 参考訳(メタデータ) (2024-05-19T20:33:36Z) - Large Language Models for Psycholinguistic Plausibility Pretesting [47.1250032409564]
本稿では,言語モデル (LM) が妥当性判定に有効かどうかを検討する。
その結果, GPT-4の妥当性判定は, 調査対象の構造全体にわたって, 人間の判断と高い相関関係があることが判明した。
そして、この相関関係が、人間の代わりにLMを使うことを暗示するかどうかを検証した。
論文 参考訳(メタデータ) (2024-02-08T07:20:02Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - Humans and language models diverge when predicting repeating text [52.03471802608112]
我々は,人間とLMのパフォーマンスが分岐するシナリオを提示する。
人間とGPT-2 LMの予測はテキストスパンの最初のプレゼンテーションで強く一致しているが、メモリが役割を担い始めると、その性能は急速にバラバラになる。
このシナリオが,LMを人間の行動に近づける上で,今後の作業に拍車をかけることを期待しています。
論文 参考訳(メタデータ) (2023-10-10T08:24:28Z) - Comparing Psychometric and Behavioral Predictors of Compliance During
Human-AI Interactions [5.893351309010412]
アダプティブAI研究における一般的な仮説は、信頼への偏見の微妙な違いは、AIからの勧告に従う可能性に大きな影響を及ぼす、というものである。
我々は、コンプライアンスの行動予測者に対して、この種の一般的な尺度をベンチマークする。
これは、初期行動における個人差が、自己報告された信頼態度の違いよりも予測的であるという一般的な性質を示唆している。
論文 参考訳(メタデータ) (2023-02-03T16:56:25Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - Expertise and confidence explain how social influence evolves along
intellective tasks [10.525352489242396]
本研究では,知的なタスクの連続を集団的に実行する個人集団における対人的影響について検討する。
本稿では, 過渡記憶系の理論, 社会的比較, 社会的影響の起源に関する信頼に関する実証的証拠を報告する。
これらの理論にインスパイアされた認知力学モデルを提案し、個人が時間とともに対人的影響を調整する過程を記述する。
論文 参考訳(メタデータ) (2020-11-13T23:48:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。