論文の概要: FAIR-QR: Enhancing Fairness-aware Information Retrieval through Query Refinement
- arxiv url: http://arxiv.org/abs/2503.21092v1
- Date: Thu, 27 Mar 2025 02:10:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:50:48.058530
- Title: FAIR-QR: Enhancing Fairness-aware Information Retrieval through Query Refinement
- Title(参考訳): FAIR-QR:クエリリファインメントによるフェアネス対応情報検索の強化
- Authors: Fumian Chen, Hui Fang,
- Abstract要約: 本稿では,検索キーワードを改良し,表現不足なグループから文書を検索し,グループフェアネスを実現する新しいフレームワークを提案する。
提案手法は,妥当性と公平性に関する有望な検索結果を示すだけでなく,各イテレーションで使用される洗練されたキーワードを表示することで解釈可能性を示す。
- 参考スコア(独自算出の注目度): 1.8577028544235155
- License:
- Abstract: Information retrieval systems such as open web search and recommendation systems are ubiquitous and significantly impact how people receive and consume online information. Previous research has shown the importance of fairness in information retrieval systems to combat the issue of echo chambers and mitigate the rich-get-richer effect. Therefore, various fairness-aware information retrieval methods have been proposed. Score-based fairness-aware information retrieval algorithms, focusing on statistical parity, are interpretable but could be mathematically infeasible and lack generalizability. In contrast, learning-to-rank-based fairness-aware information retrieval algorithms using fairness-aware loss functions demonstrate strong performance but lack interpretability. In this study, we proposed a novel and interpretable framework that recursively refines query keywords to retrieve documents from underrepresented groups and achieve group fairness. Retrieved documents using refined queries will be re-ranked to ensure relevance. Our method not only shows promising retrieval results regarding relevance and fairness but also preserves interpretability by showing refined keywords used at each iteration.
- Abstract(参考訳): オープンウェブ検索やレコメンデーションシステムのような情報検索システムは、広く普及しており、オンライン情報の受信・消費方法に大きな影響を与えている。
従来の研究では、エコーチャンバーの問題に対処し、リッチ・ゲット・リッチ・エフェクトを緩和するために、情報検索システムにおける公正性の重要性が示されている。
そこで, フェアネスを意識した情報検索手法が提案されている。
統計的パリティに着目したスコアベースフェアネス対応情報検索アルゴリズムは解釈可能であるが、数学的には不可能であり、一般化性に欠ける可能性がある。
対照的に、フェアネス認識損失関数を用いた学習からランクへのフェアネス認識情報検索アルゴリズムは、高い性能を示すが、解釈性に欠ける。
本研究では,未表現のグループから文書を検索し,グループフェアネスを達成するために,クエリキーワードを再帰的に洗練する,新規かつ解釈可能なフレームワークを提案する。
洗練されたクエリを使用した検索されたドキュメントは、関連性を保証するために再ランクされる。
提案手法は,妥当性と公平性に関する有望な検索結果を示すだけでなく,各イテレーションで使用される洗練されたキーワードを表示することによって,解釈可能性も維持する。
関連論文リスト
- Beyond Relevance: Evaluate and Improve Retrievers on Perspective Awareness [56.42192735214931]
検索者は、ドキュメントとクエリ間のセマンティックな関連性に頼るだけでなく、ユーザクエリの背後にある微妙な意図や視点を認識することも期待されている。
本研究では,検索者がクエリの異なる視点を認識し,応答できるかどうかを検討する。
我々は,現在の検索者はクエリにおいて微妙に異なる視点に対する認識が限られており,特定の視点に偏りがあることを示す。
論文 参考訳(メタデータ) (2024-05-04T17:10:00Z) - ExcluIR: Exclusionary Neural Information Retrieval [74.08276741093317]
本稿では,排他的検索のためのリソースセットであるExcluIRを提案する。
評価ベンチマークには3,452の高品質な排他的クエリが含まれている。
トレーニングセットには70,293の排他的クエリが含まれており、それぞれに正のドキュメントと負のドキュメントがペアリングされている。
論文 参考訳(メタデータ) (2024-04-26T09:43:40Z) - The Role of Relevance in Fair Ranking [1.5469452301122177]
妥当性スコアは、公正な介入を導くために、望ましい基準のセットを満たすべきであると論じる。
次に、偏りのあるユーザクリックデータから推定される関連性のケーススタディにおいて、これらの基準がすべて満たされているわけではないことを実証的に示す。
分析と結果から,関連収集・生成への新たなアプローチの必要性が浮き彫りになっている。
論文 参考訳(メタデータ) (2023-05-09T16:58:23Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
我々は,クエリとユーザが関連すると考えるドキュメントとの類似性に基づいて,文書を再参照するkNNアプローチを提案する。
異なる統合戦略を評価するため、既存の4つの情報検索データセットを関連フィードバックシナリオに変換する。
論文 参考訳(メタデータ) (2022-10-19T16:19:37Z) - Algorithmic Fairness Datasets: the Story so Far [68.45921483094705]
データ駆動アルゴリズムは、人々の幸福に直接影響し、批判的な決定をサポートするために、さまざまな領域で研究されている。
研究者のコミュニティは、既存のアルゴリズムの株式を調査し、新しいアルゴリズムを提案し、歴史的に不利な人口に対する自動意思決定のリスクと機会の理解を深めてきた。
公正な機械学習の進歩はデータに基づいており、適切に文書化された場合にのみ適切に使用できる。
残念なことに、アルゴリズムフェアネスコミュニティは、特定のリソース(オパシティ)に関する情報の不足と利用可能な情報の分散(スパーシティ)によって引き起こされる、集合的なデータドキュメント負債に悩まされている。
論文 参考訳(メタデータ) (2022-02-03T17:25:46Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
本稿では,検索システムの2つのクラスにおいて,クエリとドキュメントの役割を逆転させることにより,検索タスクとしてのEQIの実現可能性について検討する。
本研究では,クエリのランク付けの質を評価するための評価基準を導出するとともに,近似EQIの様々な実践的側面に着目した経験的分析を行う。
論文 参考訳(メタデータ) (2021-10-14T20:19:27Z) - Improving Query Representations for Dense Retrieval with Pseudo
Relevance Feedback [29.719150565643965]
本稿では,疑似関連性フィードバック(PRF)を用いて高密度検索のためのクエリ表現を改善する新しいクエリエンコーダであるANCE-PRFを提案する。
ANCE-PRF は BERT エンコーダを使用し、検索モデルである ANCE からクエリとトップ検索されたドキュメントを消費し、関連ラベルから直接クエリの埋め込みを生成する。
PRFエンコーダは、学習された注意機構でノイズを無視しながら、PRF文書から関連および補完的な情報を効果的にキャプチャする。
論文 参考訳(メタデータ) (2021-08-30T18:10:26Z) - Societal Biases in Retrieved Contents: Measurement Framework and
Adversarial Mitigation for BERT Rankers [9.811131801693856]
ランキングモデルの検索したテキスト内容の公平性を測定するための新しいフレームワークを提供する。
本稿では,最先端のbertrankersに適用した逆バイアス緩和手法を提案する。
MARCOベンチマークの結果,全てのランキングモデルの公正度は,ランク付け非依存のベースラインの公平度よりも低いが,検索内容の公平度は,提案した対角トレーニングの適用時に著しく向上することが示された。
論文 参考訳(メタデータ) (2021-04-28T08:53:54Z) - Overview of the TREC 2019 Fair Ranking Track [65.15263872493799]
TREC Fair Ranking トラックの目標は、異なるコンテンツプロバイダに対する公正性の観点から、検索システムを評価するベンチマークを開発することであった。
本稿では,タスク定義やデータ記述,アノテーションプロセスなどを含むトラックの概要について述べる。
論文 参考訳(メタデータ) (2020-03-25T21:34:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。