An improved EfficientNetV2 for garbage classification
- URL: http://arxiv.org/abs/2503.21208v1
- Date: Thu, 27 Mar 2025 06:50:44 GMT
- Title: An improved EfficientNetV2 for garbage classification
- Authors: Wenxuan Qiu, Chengxin Xie, Jingui Huang,
- Abstract summary: This paper presents an enhanced waste classification framework based on EfficientNetV2 to address challenges in data acquisition cost, generalization, and real-time performance.<n> Experiments on the Huawei Cloud waste classification dataset demonstrate that our method achieves a classification accuracy of 95.4%, surpassing the baseline by 3.2% and outperforming mainstream models.
- Score: 0.27309692684728615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an enhanced waste classification framework based on EfficientNetV2 to address challenges in data acquisition cost, generalization, and real-time performance. We propose a Channel-Efficient Attention (CE-Attention) module that mitigates feature loss during global pooling without introducing dimensional scaling, effectively enhancing critical feature extraction. Additionally, a lightweight multi-scale spatial feature extraction module (SAFM) is developed by integrating depthwise separable convolutions, significantly reducing model complexity. Comprehensive data augmentation strategies are further employed to improve generalization. Experiments on the Huawei Cloud waste classification dataset demonstrate that our method achieves a classification accuracy of 95.4\%, surpassing the baseline by 3.2\% and outperforming mainstream models. The results validate the effectiveness of our approach in balancing accuracy and efficiency for practical waste classification scenarios.
Related papers
- Hyperspectral Images Efficient Spatial and Spectral non-Linear Model with Bidirectional Feature Learning [7.06787067270941]
We propose a novel framework that significantly reduces data volume while enhancing classification accuracy.<n>Our model employs a bidirectional reversed convolutional neural network (CNN) to efficiently extract spectral features, complemented by a specialized block for spatial feature analysis.
arXiv Detail & Related papers (2024-11-29T23:32:26Z) - Efficient Diffusion as Low Light Enhancer [63.789138528062225]
Reflectance-Aware Trajectory Refinement (RATR) is a simple yet effective module to refine the teacher trajectory using the reflectance component of images.
textbfReflectance-aware textbfDiffusion with textbfDistilled textbfTrajectory (textbfReDDiT) is an efficient and flexible distillation framework tailored for Low-Light Image Enhancement (LLIE)
arXiv Detail & Related papers (2024-10-16T08:07:18Z) - Efficient Network Traffic Feature Sets for IoT Intrusion Detection [0.0]
This work evaluates the feature sets provided by a combination of different feature selection methods, namely Information Gain, Chi-Squared Test, Recursive Feature Elimination, Mean Absolute Deviation, and Dispersion Ratio, in multiple IoT network datasets.
The influence of the smaller feature sets on both the classification performance and the training time of ML models is compared, with the aim of increasing the computational efficiency of IoT intrusion detection.
arXiv Detail & Related papers (2024-06-12T09:51:29Z) - IB-AdCSCNet:Adaptive Convolutional Sparse Coding Network Driven by Information Bottleneck [4.523653503622693]
We introduce IB-AdCSCNet, a deep learning model grounded in information bottleneck theory.
IB-AdCSCNet seamlessly integrates the information bottleneck trade-off strategy into deep networks.
Experimental results on CIFAR-10 and CIFAR-100 datasets demonstrate that IB-AdCSCNet not only matches the performance of deep residual convolutional networks but also outperforms them when handling corrupted data.
arXiv Detail & Related papers (2024-05-23T05:35:57Z) - Latent Enhancing AutoEncoder for Occluded Image Classification [2.6217304977339473]
We introduce LEARN: Latent Enhancing feAture Reconstruction Network.
An auto-encoder based network that can be incorporated into the classification model before its head.
On the OccludedPASCAL3D+ dataset, the proposed LEARN outperforms standard classification models.
arXiv Detail & Related papers (2024-02-10T12:22:31Z) - ECoFLaP: Efficient Coarse-to-Fine Layer-Wise Pruning for Vision-Language
Models [70.45441031021291]
Large Vision-Language Models (LVLMs) can understand the world comprehensively by integrating rich information from different modalities.
LVLMs are often problematic due to their massive computational/energy costs and carbon consumption.
We propose Efficient Coarse-to-Fine LayerWise Pruning (ECoFLaP), a two-stage coarse-to-fine weight pruning approach for LVLMs.
arXiv Detail & Related papers (2023-10-04T17:34:00Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - BiPointNet: Binary Neural Network for Point Clouds [73.07852523426224]
BiPointNet is the first model binarization approach for efficient deep learning on point clouds.
We show that BiPointNet gives an impressive 14.7x speedup and 18.9x storage saving on real-world resource-constrained devices.
arXiv Detail & Related papers (2020-10-12T07:54:51Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results.
Few-shot segmentation is proposed to tackle this problem by learning a model that quickly adapts to new classes with a few labeled support samples.
Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information.
arXiv Detail & Related papers (2020-08-04T10:41:32Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.