Frequency-Aware Gaussian Splatting Decomposition
- URL: http://arxiv.org/abs/2503.21226v1
- Date: Thu, 27 Mar 2025 07:35:40 GMT
- Title: Frequency-Aware Gaussian Splatting Decomposition
- Authors: Yishai Lavi, Leo Segre, Shai Avidan,
- Abstract summary: 3D Gaussian Splatting (3D-GS) has revolutionized novel view synthesis with its efficient, explicit representation.<n>We introduce a frequency-decomposed 3D-GS framework that groups 3D Gaussians that correspond to subbands in the Laplacian Pyrmaids of the input images.
- Score: 10.951186766576173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (3D-GS) has revolutionized novel view synthesis with its efficient, explicit representation. However, it lacks frequency interpretability, making it difficult to separate low-frequency structures from fine details. We introduce a frequency-decomposed 3D-GS framework that groups 3D Gaussians that correspond to subbands in the Laplacian Pyrmaids of the input images. Our approach enforces coherence within each subband (i.e., group of 3D Gaussians) through dedicated regularization, ensuring well-separated frequency components. We extend color values to both positive and negative ranges, allowing higher-frequency layers to add or subtract residual details. To stabilize optimization, we employ a progressive training scheme that refines details in a coarse-to-fine manner. Beyond interpretability, this frequency-aware design unlocks a range of practical benefits. Explicit frequency separation enables advanced 3D editing and stylization, allowing precise manipulation of specific frequency bands. It also supports dynamic level-of-detail control for progressive rendering, streaming, foveated rendering and fast geometry interaction. Through extensive experiments, we demonstrate that our method provides improved control and flexibility for emerging applications in scene editing and interactive rendering. Our code will be made publicly available.
Related papers
- EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.<n>We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - LookCloser: Frequency-aware Radiance Field for Tiny-Detail Scene [36.565356293244534]
FA-NeRF is a novel framework for view synthesis that simultaneously captures the overall scene structure and high-definition details within a single NeRF model.
Our framework incorporates a frequency grid for fast convergence and querying, a frequency-aware feature re-weighting strategy to balance features across different frequency contents.
arXiv Detail & Related papers (2025-03-24T10:07:46Z) - Sharpening Neural Implicit Functions with Frequency Consolidation Priors [53.6277160912059]
Signed Distance Functions (SDFs) are vital implicit representations to represent high fidelity 3D surfaces.<n>Current methods mainly leverage a neural network to learn an SDF from various supervisions including signed, 3D point clouds, or multi-view images.<n>We introduce a method to sharpen a low frequency SDF observation by recovering its high frequency components, pursuing a sharper and more complete surface.
arXiv Detail & Related papers (2024-12-27T16:18:46Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
We introduce 3D Linear Splatting (3DLS), which replaces Gaussian kernels with linear kernels to achieve sharper and more precise results.<n>3DLS demonstrates state-of-the-art fidelity and accuracy, along with a 30% FPS improvement over baseline 3DGS.
arXiv Detail & Related papers (2024-11-19T11:59:54Z) - Octree-GS: Towards Consistent Real-time Rendering with LOD-Structured 3D Gaussians [18.774112672831155]
3D-GS has shown remarkable rendering fidelity and efficiency compared to NeRF-based neural scene representations.
We introduce Octree-GS, featuring an LOD-structured 3D Gaussian approach supporting level-of-detail decomposition for scene representation.
arXiv Detail & Related papers (2024-03-26T17:39:36Z) - FreGS: 3D Gaussian Splatting with Progressive Frequency Regularization [67.47895278233717]
We develop a progressive frequency regularization technique to tackle the over-reconstruction issue within the frequency space.
FreGS achieves superior novel view synthesis and outperforms the state-of-the-art consistently.
arXiv Detail & Related papers (2024-03-11T17:00:27Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.56357905500512]
3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis.
We propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS.
Our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
arXiv Detail & Related papers (2024-01-31T14:19:03Z) - Guided Frequency Loss for Image Restoration [0.9821874476902969]
We propose the Guided Frequency Loss (GFL), which helps the model to learn in a balanced way the image's frequency content alongside the spatial content.
It aggregates three major components that work in parallel to enhance learning efficiency.
We found that the GFL loss improved the PSNR metric in most implemented experiments.
arXiv Detail & Related papers (2023-09-27T10:37:51Z) - High Fidelity 3D Hand Shape Reconstruction via Scalable Graph Frequency
Decomposition [77.29516516532439]
We design a frequency split network to generate 3D hand mesh using different frequency bands in a coarse-to-fine manner.
To capture high-frequency personalized details, we transform the 3D mesh into the frequency domain, and propose a novel frequency decomposition loss.
Our approach generates fine-grained details for high-fidelity 3D hand reconstruction.
arXiv Detail & Related papers (2023-07-08T19:26:09Z) - Neural Fourier Filter Bank [18.52741992605852]
We present a novel method to provide efficient and highly detailed reconstructions.
Inspired by wavelets, we learn a neural field that decompose the signal both spatially and frequency-wise.
arXiv Detail & Related papers (2022-12-04T03:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.