論文の概要: InternVL-X: Advancing and Accelerating InternVL Series with Efficient Visual Token Compression
- arxiv url: http://arxiv.org/abs/2503.21307v1
- Date: Thu, 27 Mar 2025 09:31:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:54:21.389282
- Title: InternVL-X: Advancing and Accelerating InternVL Series with Efficient Visual Token Compression
- Title(参考訳): InternVL-X:高能率視覚トーケン圧縮を用いたInternVLシリーズの高速化と高速化
- Authors: Dongchen Lu, Yuyao Sun, Zilu Zhang, Leping Huang, Jianliang Zeng, Mao Shu, Huo Cao,
- Abstract要約: InternVL-Xは、性能と効率の両方で、InternVLモデルより優れている。
20%以下のビジュアルトークンを利用することで、InternVL-Xは7つのパブリックMLLMベンチマークで最先端のパフォーマンスを達成し、12タスクの平均メトリックを2.34%改善する。
- 参考スコア(独自算出の注目度): 1.8893427856534721
- License:
- Abstract: Most multimodal large language models (MLLMs) treat visual tokens as "a sequence of text", integrating them with text tokens into a large language model (LLM). However, a great quantity of visual tokens significantly increases the demand for computational resources and time. In this paper, we propose InternVL-X, which outperforms the InternVL model in both performance and efficiency by incorporating three visual token compression methods. First, we propose a novel vision-language projector, PVTC. This component integrates adjacent visual embeddings to form a local query and utilizes the transformed CLS token as a global query, then performs point-to-region cross-attention through these local and global queries to more effectively convert visual features. Second, we present a layer-wise visual token compression module, LVTC, which compresses tokens in the LLM shallow layers and then expands them through upsampling and residual connections in the deeper layers. This significantly enhances the model computational efficiency. Futhermore, we propose an efficient high resolution slicing method, RVTC, which dynamically adjusts the number of visual tokens based on image area or length filtering. RVTC greatly enhances training efficiency with only a slight reduction in performance. By utilizing 20% or fewer visual tokens, InternVL-X achieves state-of-the-art performance on 7 public MLLM benchmarks, and improves the average metric by 2.34% across 12 tasks.
- Abstract(参考訳): ほとんどのマルチモーダルな大言語モデル(MLLM)は、視覚トークンを「テキストのシーケンス」として扱い、テキストトークンを大きな言語モデル(LLM)に統合する。
しかし、膨大な量の視覚トークンは、計算資源や時間に対する需要を著しく高めている。
本稿では,3つの視覚的トークン圧縮手法を組み込んで,InternVLモデルの性能と効率を両立させるInternVL-Xを提案する。
まず,新しい視覚言語プロジェクタPVTCを提案する。
このコンポーネントは、隣接するビジュアル埋め込みを統合してローカルクエリを形成し、変換されたCLSトークンをグローバルクエリとして利用し、これらのローカルクエリとグローバルクエリを通じてポイントツーリージョンのクロスアテンションを実行し、視覚的特徴をより効果的に変換する。
第2に,LLM浅層におけるトークンを圧縮し,深層におけるアップサンプリングおよび残差接続により拡張するレイヤワイドなビジュアルトークン圧縮モジュールLVTCを提案する。
これにより、モデル計算効率が大幅に向上する。
さらに,画像領域や長さフィルタリングに基づいて視覚トークンの数を動的に調整する,効率的な高分解能スライシング手法であるRVTCを提案する。
RVTCは、わずかに性能を低下させるだけで、トレーニング効率を大幅に向上させる。
20%以下のビジュアルトークンを利用することで、InternVL-Xは7つのパブリックMLLMベンチマークで最先端のパフォーマンスを達成し、12タスクの平均メトリックを2.34%改善する。
関連論文リスト
- [CLS] Token Tells Everything Needed for Training-free Efficient MLLMs [66.5266435598799]
MLLM(Multi- Language Large Language Models)は、最近、広範囲の視覚タスクにおいて強力なパフォーマンスを示した。
しかし、その効率的なデプロイメントは、高い計算コストとメモリ要求のため、依然として大きな課題である。
本稿では,VTC圧縮という,列車不要の視覚圧縮のための簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-12-08T05:29:39Z) - Accelerating Multimodal Large Language Models by Searching Optimal Vision Token Reduction [62.8375542401319]
MLLM(Multimodal Large Language Models)は、入力イメージを視覚トークンとしてエンコードし、それらを言語バックボーンに入力する。
画像解像度が大きくなるにつれて、視覚トークンの数は2次的に増加し、膨大な計算コストがかかる。
本稿では,各層を浅層から深層まで保持する最小限の視覚トークンを求めるために,欲求探索アルゴリズム(G-Search)を提案する。
論文 参考訳(メタデータ) (2024-11-30T18:54:32Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
既存のMultimoal Large Language Models (MLLM) における視覚トークンの過剰使用は、しばしば明らかな冗長性を示し、非常に高価な計算をもたらす。
DyVTE(Dynamic visual-token exit)と呼ばれるMLLMの効率を改善するための簡易かつ効果的な手法を提案する。
DyVTEは軽量なハイパーネットワークを使用して、テキストトークンの状態を認識し、特定のレイヤの後にすべてのビジュアルトークンを削除する。
論文 参考訳(メタデータ) (2024-11-29T11:24:23Z) - FoPru: Focal Pruning for Efficient Large Vision-Language Models [11.36025001578531]
本稿では、視覚エンコーダから導出される注目に基づくトークンの重要度に基づいて、視覚トークンを抽出する訓練不要なFocal Pruning(FoPru)を提案する。
提案手法は,高い精度を維持しつつ多数の冗長トークンを抽出し,推論効率を大幅に向上させる。
論文 参考訳(メタデータ) (2024-11-21T14:22:38Z) - Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See [37.7015406019386]
MLLM(Multimodal Large Language Models)は、視覚エンコーダからの視覚トークンをテキストトークンとして扱う。
トークンの数が増加するにつれて、LLMにおける計算の2次スケーリングは効率のボトルネックをもたらす。
本研究では,LLaVAにおけるパラメータと計算パターンの両レベルでの視覚計算の冗長性について検討する。
論文 参考訳(メタデータ) (2024-10-08T16:13:24Z) - Sparsity Meets Similarity: Leveraging Long-Tail Distribution for Dynamic Optimized Token Representation in Multimodal Large Language Models [6.467840081978855]
マルチモーダル大言語モデル(MM-LLM)は様々なタスクで大きな成功を収めた。
主な計算負担は、処理されたテキストと視覚トークンから生じる。
視覚的CLSトークン類似度曲線の屈折点を同定する動的プルーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-02T10:49:10Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
我々は、視覚トークンの数を減らさずに、冗長な視覚トークンを「スキップ層」として活用することで、視覚計算を減らし、新しいアプローチを導入する。
提案手法であるVideoLLM-MoDは深度混合LLMにインスパイアされ,長期・ストリーミングビデオにおける多数の視覚トークンの課題に対処する。
論文 参考訳(メタデータ) (2024-08-29T17:21:58Z) - TokenPacker: Efficient Visual Projector for Multimodal LLM [37.1071749188282]
ビジュアルプロジェクタは、ビジュアルエンコーダとLarge Language Model(LLM)の間に必須のブリッジとして機能する。
本稿では,密集した特徴を注入して凝縮した視覚トークンを生成するために,粗く細かなスキームを取り入れた新しいビジュアルプロジェクタを提案する。
我々のアプローチでは、ビジュアルトークンを75%89%圧縮し、多様なベンチマークで同等またはさらに優れたパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-02T16:10:55Z) - Efficient Large Multi-modal Models via Visual Context Compression [23.966237939194514]
本稿では,視覚トークンに関する冗長性の解析と,大規模言語モデルにおける効率的な訓練について述べる。
最初の実験では、単に平均プーリングによってテスト段階で最大70%の視覚トークンを除去することは、視覚的質問応答精度の最小3%の低下にしか至らないことが示された。
GQAベンチマークにビジュアルコンテキストを導入し、視覚トークンの数を減らし、性能を犠牲にすることなくトレーニングと推論効率を向上させる。
論文 参考訳(メタデータ) (2024-06-28T17:57:14Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
視覚トークン化は、視覚と言語間のセマンティックアライメントに不可欠である。
本稿では,新しい動的セマンティック等価ビジョントケナイザ(SeTok)を提案する。
SeTokは動的クラスタリングアルゴリズムを通じて、視覚的特徴をセマンティックユニットにグループ化する。
結果として得られる視覚トークンは意味的整合性を効果的に保持し、低周波と高周波の両方の視覚特徴をキャプチャする。
論文 参考訳(メタデータ) (2024-06-07T17:55:43Z) - An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models [65.37846460916042]
視覚的トークンに対する注意計算は,LVLMの深い層において極めて非効率であることがわかった。
本稿では,計算効率の最適化を目的とした多用途プラグアンドプレイ方式であるFastVを紹介する。
論文 参考訳(メタデータ) (2024-03-11T14:35:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。