Hyperbolic-constraint Point Cloud Reconstruction from Single RGB-D Images
- URL: http://arxiv.org/abs/2412.09055v1
- Date: Thu, 12 Dec 2024 08:27:39 GMT
- Title: Hyperbolic-constraint Point Cloud Reconstruction from Single RGB-D Images
- Authors: Wenrui Li, Zhe Yang, Wei Han, Hengyu Man, Xingtao Wang, Xiaopeng Fan,
- Abstract summary: We introduce hyperbolic space to 3D point cloud reconstruction, enabling the model to represent and understand complex hierarchical structures in point clouds with low distortion.
Our model outperforms most existing models, and ablation studies demonstrate the significance of our model and its components.
- Score: 19.23499128175523
- License:
- Abstract: Reconstructing desired objects and scenes has long been a primary goal in 3D computer vision. Single-view point cloud reconstruction has become a popular technique due to its low cost and accurate results. However, single-view reconstruction methods often rely on expensive CAD models and complex geometric priors. Effectively utilizing prior knowledge about the data remains a challenge. In this paper, we introduce hyperbolic space to 3D point cloud reconstruction, enabling the model to represent and understand complex hierarchical structures in point clouds with low distortion. We build upon previous methods by proposing a hyperbolic Chamfer distance and a regularized triplet loss to enhance the relationship between partial and complete point clouds. Additionally, we design adaptive boundary conditions to improve the model's understanding and reconstruction of 3D structures. Our model outperforms most existing models, and ablation studies demonstrate the significance of our model and its components. Experimental results show that our method significantly improves feature extraction capabilities. Our model achieves outstanding performance in 3D reconstruction tasks.
Related papers
- EasyHOI: Unleashing the Power of Large Models for Reconstructing Hand-Object Interactions in the Wild [79.71523320368388]
Our work aims to reconstruct hand-object interactions from a single-view image.
We first design a novel pipeline to estimate the underlying hand pose and object shape.
With the initial reconstruction, we employ a prior-guided optimization scheme.
arXiv Detail & Related papers (2024-11-21T16:33:35Z) - LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image [64.94932577552458]
Large Reconstruction Models have made significant strides in the realm of automated 3D content generation from single or multiple input images.
Despite their success, these models often produce 3D meshes with geometric inaccuracies, stemming from the inherent challenges of deducing 3D shapes solely from image data.
We introduce a novel framework, the Large Image and Point Cloud Alignment Model (LAM3D), which utilizes 3D point cloud data to enhance the fidelity of generated 3D meshes.
arXiv Detail & Related papers (2024-05-24T15:09:12Z) - REACTO: Reconstructing Articulated Objects from a Single Video [64.89760223391573]
We propose a novel deformation model that enhances the rigidity of each part while maintaining flexible deformation of the joints.
Our method outperforms previous works in producing higher-fidelity 3D reconstructions of general articulated objects.
arXiv Detail & Related papers (2024-04-17T08:01:55Z) - Robust 3D Shape Reconstruction in Zero-Shot from a Single Image in the Wild [22.82439286651921]
We propose a unified regression model that integrates segmentation and reconstruction, specifically designed for 3D shape reconstruction.
We also introduce a scalable data synthesis pipeline that simulates a wide range of variations in objects, occluders, and backgrounds.
Our training on our synthetic data enables the proposed model to achieve state-of-the-art zero-shot results on real-world images.
arXiv Detail & Related papers (2024-03-21T16:40:10Z) - Point2Building: Reconstructing Buildings from Airborne LiDAR Point Clouds [23.897507889025817]
We present a learning-based approach to reconstruct buildings as 3D polygonal meshes from airborne LiDAR point clouds.
Our model learns directly from the point cloud data, thereby reducing error propagation and increasing the fidelity of the reconstruction.
We experimentally validate our method on a collection of airborne LiDAR data of Zurich, Berlin and Tallinn.
arXiv Detail & Related papers (2024-03-04T15:46:50Z) - LIST: Learning Implicitly from Spatial Transformers for Single-View 3D
Reconstruction [5.107705550575662]
List is a novel neural architecture that leverages local and global image features to reconstruct geometric and topological structure of a 3D object from a single image.
We show the superiority of our model in reconstructing 3D objects from both synthetic and real-world images against the state of the art.
arXiv Detail & Related papers (2023-07-23T01:01:27Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNet is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network.
Our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks.
arXiv Detail & Related papers (2023-03-28T08:21:44Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
Single-view 3D Mesh Reconstruction is a fundamental computer vision task that aims at recovering 3D shapes from single-view RGB images.
This paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories.
We propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction.
arXiv Detail & Related papers (2022-08-04T14:13:35Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - Reconstruct, Rasterize and Backprop: Dense shape and pose estimation
from a single image [14.9851111159799]
This paper presents a new system to obtain dense object reconstructions along with 6-DoF poses from a single image.
We leverage recent advances in differentiable rendering (in particular, robotics) to close the loop with 3D reconstruction in camera frame.
arXiv Detail & Related papers (2020-04-25T20:53:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.