Improved Runtime Analysis of a Multi-Valued Compact Genetic Algorithm on Two Generalized OneMax Problems
- URL: http://arxiv.org/abs/2503.21439v1
- Date: Thu, 27 Mar 2025 12:32:15 GMT
- Title: Improved Runtime Analysis of a Multi-Valued Compact Genetic Algorithm on Two Generalized OneMax Problems
- Authors: Sumit Adak, Carsten Witt,
- Abstract summary: We present the first theoretical analysis of the multi-valued cGA (r-cGA) on the G-OneMax function.<n>We demonstrate that the runtime is O(nr3 log2 n log r) with high probability.<n>We also refine the previously established runtime analysis of the r-cGA on r-OneMax.
- Score: 2.07180164747172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research in the runtime analysis of estimation of distribution algorithms (EDAs) has focused on univariate EDAs for multi-valued decision variables. In particular, the runtime of the multi-valued cGA (r-cGA) and UMDA on multi-valued functions has been a significant area of study. Adak and Witt (PPSN 2024) and Hamano et al. (ECJ 2024) independently performed a first runtime analysis of the r-cGA on the r-valued OneMax function (r-OneMax). Adak and Witt also introduced a different r-valued OneMax function called G-OneMax. However, for that function, only empirical results were provided so far due to the increased complexity of its runtime analysis, since r-OneMax involves categorical values of two types only, while G-OneMax encompasses all possible values. In this paper, we present the first theoretical runtime analysis of the r-cGA on the G-OneMax function. We demonstrate that the runtime is O(nr^3 log^2 n log r) with high probability. Additionally, we refine the previously established runtime analysis of the r-cGA on r-OneMax, improving the previous bound to O(nr log n log r), which improves the state of the art by an asymptotic factor of log n and is tight for the binary case. Moreover, we for the first time include the case of frequency borders.
Related papers
- Runtime Analysis of the Compact Genetic Algorithm on the LeadingOnes Benchmark [9.044970217182117]
We conduct a formal runtime analysis of the cGA on LeadingOnes.<n>For the cGA's single parameter -- called the hypothetical population size -- at least polylogarithmically larger than the problem size, we prove that the cGA samples the optimum of LeadingOnes.
arXiv Detail & Related papers (2025-01-27T17:51:51Z) - A Runtime Analysis of the Multi-Valued Compact Genetic Algorithm on Generalized LeadingOnes [2.07180164747172]
We analyze the runtime analysis of the multi-valued cGA on the r-valued LeadingOnes function.<n>We show that the runtime of the r-cGA on r-LeadingOnes is O(n2r2 log3 n log2 r) with high probability.
arXiv Detail & Related papers (2025-01-16T12:59:07Z) - Runtime Analysis of a Multi-Valued Compact Genetic Algorithm on Generalized OneMax [2.07180164747172]
We provide a first runtime analysis of a generalized OneMax function.
We show that the r-cGA solves this r-valued OneMax problem efficiently.
At the end of experiments, we state one conjecture related to the expected runtime of another variant of multi-valued OneMax function.
arXiv Detail & Related papers (2024-04-17T10:40:12Z) - Fixed-Budget Real-Valued Combinatorial Pure Exploration of Multi-Armed
Bandit [65.268245109828]
We first introduce the Combinatorial Successive Asign algorithm, which is the first algorithm that can identify the best action even when the size of the action class is exponentially large.
We show that the upper bound of the probability of error of the CSA algorithm matches a lower bound up to a logarithmic factor in the exponent.
We experimentally compare the algorithms with previous methods and show that our algorithm performs better.
arXiv Detail & Related papers (2023-10-24T09:47:32Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
gradient Langevin Dynamics is one of the most fundamental algorithms to solve non-eps optimization problems.
In this paper, we show two variants of this kind, namely the Variance Reduced Langevin Dynamics and the Recursive Gradient Langevin Dynamics.
arXiv Detail & Related papers (2022-03-30T11:39:00Z) - Efficient Algorithms for Extreme Bandits [20.68824391770909]
We contribute to the Extreme Bandit problem, a variant of Multi-Armed Bandits in which the learner seeks to collect the largest possible reward.
We first study the concentration of the maximum of i.i.d random variables under mild assumptions on the tail of the rewards distributions.
We then propose and analyze a more adaptive, anytime algorithm, QoMax-SDA, which combines QoMax with a subsampling method recently introduced by Baudry et al.
arXiv Detail & Related papers (2022-03-21T11:09:34Z) - Breaking the Linear Iteration Cost Barrier for Some Well-known
Conditional Gradient Methods Using MaxIP Data-structures [49.73889315176884]
Conditional gradient methods (CGM) are widely used in modern machine learning.
Most efforts focus on reducing the number of iterations as a means to reduce the overall running time.
We show the first algorithm, where the cost per iteration is sublinear in the number of parameters, for many fundamental optimization algorithms.
arXiv Detail & Related papers (2021-11-30T05:40:14Z) - Predicting parameters for the Quantum Approximate Optimization Algorithm
for MAX-CUT from the infinite-size limit [0.05076419064097732]
We present an explicit algorithm to evaluate the performance of QAOA on MAX-CUT applied to random Erdos-Renyi graphs of expected degree $d$.
This analysis yields an explicit mapping between QAOA parameters for MAX-CUT on Erdos-Renyi graphs, and the Sherrington-Kirkpatrick model.
arXiv Detail & Related papers (2021-10-20T17:58:53Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.