Predicting parameters for the Quantum Approximate Optimization Algorithm
for MAX-CUT from the infinite-size limit
- URL: http://arxiv.org/abs/2110.10685v1
- Date: Wed, 20 Oct 2021 17:58:53 GMT
- Title: Predicting parameters for the Quantum Approximate Optimization Algorithm
for MAX-CUT from the infinite-size limit
- Authors: Sami Boulebnane and Ashley Montanaro
- Abstract summary: We present an explicit algorithm to evaluate the performance of QAOA on MAX-CUT applied to random Erdos-Renyi graphs of expected degree $d$.
This analysis yields an explicit mapping between QAOA parameters for MAX-CUT on Erdos-Renyi graphs, and the Sherrington-Kirkpatrick model.
- Score: 0.05076419064097732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combinatorial optimization is regarded as a potentially promising application
of near and long-term quantum computers. The best-known heuristic quantum
algorithm for combinatorial optimization on gate-based devices, the Quantum
Approximate Optimization Algorithm (QAOA), has been the subject of many
theoretical and empirical studies. Unfortunately, its application to specific
combinatorial optimization problems poses several difficulties: among these,
few performance guarantees are known, and the variational nature of the
algorithm makes it necessary to classically optimize a number of parameters. In
this work, we partially address these issues for a specific combinatorial
optimization problem: diluted spin models, with MAX-CUT as a notable special
case. Specifically, generalizing the analysis of the Sherrington-Kirkpatrick
model by Farhi et al., we establish an explicit algorithm to evaluate the
performance of QAOA on MAX-CUT applied to random Erdos-Renyi graphs of expected
degree $d$ for an arbitrary constant number of layers $p$ and as the problem
size tends to infinity. This analysis yields an explicit mapping between QAOA
parameters for MAX-CUT on Erdos-Renyi graphs of expected degree $d$, in the
limit $d \to \infty$, and the Sherrington-Kirkpatrick model, and gives good
QAOA variational parameters for MAX-CUT applied to Erdos-Renyi graphs. We then
partially generalize the latter analysis to graphs with a degree distribution
rather than a single degree $d$, and finally to diluted spin-models with
$D$-body interactions ($D \geq 3$). We validate our results with numerical
experiments suggesting they may have a larger reach than rigorously
established; among other things, our algorithms provided good initial, if not
nearly optimal, variational parameters for very small problem instances where
the infinite-size limit assumption is clearly violated.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Missing Puzzle Pieces in the Performance Landscape of the Quantum Approximate Optimization Algorithm [0.0]
We consider the maximum cut and maximum independent set problems on random regular graphs.
We calculate the energy densities achieved by QAOA for high regularities up to $d=100$.
We combine the QAOA analysis with state-of-the-art upper bounds on optimality for both problems.
arXiv Detail & Related papers (2024-06-20T18:00:02Z) - An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
We analyse the ability of quantum D-Wave annealers to find the maximum clique on a graph, expressed as a QUBO problem.
We propose a decomposition algorithm for the complementary maximum independent set problem, and a graph generation algorithm to control the number of nodes, the number of cliques, the density, the connectivity indices and the ratio of the solution size to the number of other nodes.
arXiv Detail & Related papers (2024-06-11T04:40:05Z) - Similarity-Based Parameter Transferability in the Quantum Approximate
Optimization Algorithm [2.985148456817082]
We show clustering of optimal QAOA parameters around specific values.
successful transferability of parameters between different QAOA instances can be explained.
We show that one can use optimal donor graph QAOA parameters as near-optimal parameters for larger acceptor graphs with comparable approximation ratios.
arXiv Detail & Related papers (2023-07-11T16:35:49Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Performance and limitations of the QAOA at constant levels on large
sparse hypergraphs and spin glass models [15.857373057387669]
We prove concentration properties at any constant level (number of layers) on ensembles of random optimization problems in the infinite size limit.
Our analysis can be understood via a saddle-point approximation of a sum-over-paths integral.
We show that the performance of the QAOA at constant levels is bounded away from optimality for pure $q$-spin models when $qge 4$ and is even.
arXiv Detail & Related papers (2022-04-21T17:40:39Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
We propose a strategy to give high approximation ratio on average, even at large circuit depths, by initializing QAOA with the optimal parameters obtained from the previous depths.
We test our strategy on the Max-cut problem of certain classes of graphs such as the 3-regular graphs and the Erd"os-R'enyi graphs.
arXiv Detail & Related papers (2021-08-11T15:44:16Z) - Empirical performance bounds for quantum approximate optimization [0.27998963147546135]
Quantifying performance bounds provides insight into when QAOA may be viable for solving real-world applications.
We find QAOA exceeds the Goemans-Williamson approximation ratio bound for most graphs.
The resulting data set is presented as a benchmark for establishing empirical bounds on QAOA performance.
arXiv Detail & Related papers (2021-02-12T23:12:09Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.